Display Settings:

Format
Items per page
Sort by

Send to:

Choose Destination

Results: 1 to 20 of 95

1.

Cocktail δ-integration of xylose assimilation genes for efficient ethanol production from xylose in Saccharomyces cerevisiae.

Kato H, Matsuda F, Yamada R, Nagata K, Shirai T, Hasunuma T, Kondo A.

J Biosci Bioeng. 2013 Sep;116(3):333-6. doi: 10.1016/j.jbiosc.2013.03.020. Epub 2013 May 4.

PMID:
23651809
[PubMed - in process]
2.

High expression of XYL2 coding for xylitol dehydrogenase is necessary for efficient xylose fermentation by engineered Saccharomyces cerevisiae.

Kim SR, Ha SJ, Kong II, Jin YS.

Metab Eng. 2012 Jul;14(4):336-43. doi: 10.1016/j.ymben.2012.04.001. Epub 2012 Apr 13.

PMID:
22521925
[PubMed - indexed for MEDLINE]
3.

Engineering of carbon catabolite repression in recombinant xylose fermenting Saccharomyces cerevisiae.

Roca C, Haack MB, Olsson L.

Appl Microbiol Biotechnol. 2004 Feb;63(5):578-83. Epub 2003 Aug 19.

PMID:
12925863
[PubMed - indexed for MEDLINE]
4.
5.

Anaerobic xylose fermentation by recombinant Saccharomyces cerevisiae carrying XYL1, XYL2, and XKS1 in mineral medium chemostat cultures.

Eliasson A, Christensson C, Wahlbom CF, Hahn-Hägerdal B.

Appl Environ Microbiol. 2000 Aug;66(8):3381-6.

PMID:
10919795
[PubMed - indexed for MEDLINE]
Free PMC Article
6.

Establishment of a xylose metabolic pathway in an industrial strain of Saccharomyces cerevisiae.

Wang Y, Shi WL, Liu XY, Shen Y, Bao XM, Bai FW, Qu YB.

Biotechnol Lett. 2004 Jun;26(11):885-90.

PMID:
15269535
[PubMed - indexed for MEDLINE]
7.

Feasibility of xylose fermentation by engineered Saccharomyces cerevisiae overexpressing endogenous aldose reductase (GRE3), xylitol dehydrogenase (XYL2), and xylulokinase (XYL3) from Scheffersomyces stipitis.

Kim SR, Kwee NR, Kim H, Jin YS.

FEMS Yeast Res. 2013 May;13(3):312-21. doi: 10.1111/1567-1364.12036. Epub 2013 Mar 4.

PMID:
23398717
[PubMed - indexed for MEDLINE]
8.

Optimal growth and ethanol production from xylose by recombinant Saccharomyces cerevisiae require moderate D-xylulokinase activity.

Jin YS, Ni H, Laplaza JM, Jeffries TW.

Appl Environ Microbiol. 2003 Jan;69(1):495-503.

PMID:
12514033
[PubMed - indexed for MEDLINE]
Free PMC Article
9.

Balance of XYL1 and XYL2 expression in different yeast chassis for improved xylose fermentation.

Zha J, Hu ML, Shen MH, Li BZ, Wang JY, Yuan YJ.

Front Microbiol. 2012 Oct 5;3:355. doi: 10.3389/fmicb.2012.00355. eCollection 2012.

PMID:
23060871
[PubMed]
Free PMC Article
10.

Improvement of xylose uptake and ethanol production in recombinant Saccharomyces cerevisiae through an inverse metabolic engineering approach.

Jin YS, Alper H, Yang YT, Stephanopoulos G.

Appl Environ Microbiol. 2005 Dec;71(12):8249-56.

PMID:
16332810
[PubMed - indexed for MEDLINE]
Free PMC Article
11.

Ethanolic fermentation of acid pre-treated starch industry effluents by recombinant Saccharomyces cerevisiae strains.

Zaldivar J, Roca C, Le Foll C, Hahn-Hägerdal B, Olsson L.

Bioresour Technol. 2005 Oct;96(15):1670-6. Epub 2005 Feb 25.

PMID:
16023569
[PubMed - indexed for MEDLINE]
12.

Physiological and enzymatic comparison between Pichia stipitis and recombinant Saccharomyces cerevisiae on xylose fermentation.

Guo C, Jiang N.

World J Microbiol Biotechnol. 2013 Mar;29(3):541-7. doi: 10.1007/s11274-012-1208-x. Epub 2012 Nov 20.

PMID:
23180545
[PubMed - indexed for MEDLINE]
13.

Metabolic engineering of Saccharomyces cerevisiae for increased bioconversion of lignocellulose to ethanol.

Jun H, Jiayi C.

Indian J Microbiol. 2012 Sep;52(3):442-8. doi: 10.1007/s12088-012-0259-x. Epub 2012 Mar 16.

PMID:
23997337
[PubMed]
Free PMC Article
14.

Construction of an efficient xylose-fermenting diploid Saccharomyces cerevisiae strain through mating of two engineered haploid strains capable of xylose assimilation.

Kim SR, Lee KS, Kong II, Lesmana A, Lee WH, Seo JH, Kweon DH, Jin YS.

J Biotechnol. 2013 Mar 10;164(1):105-11. doi: 10.1016/j.jbiotec.2012.12.012. Epub 2013 Jan 29.

PMID:
23376240
[PubMed - indexed for MEDLINE]
15.

Establishment of L-arabinose fermentation in glucose/xylose co-fermenting recombinant Saccharomyces cerevisiae 424A(LNH-ST) by genetic engineering.

Bera AK, Sedlak M, Khan A, Ho NW.

Appl Microbiol Biotechnol. 2010 Aug;87(5):1803-11. doi: 10.1007/s00253-010-2609-0. Epub 2010 May 7.

PMID:
20449743
[PubMed - indexed for MEDLINE]
16.

Improvements in ethanol production from xylose by mating recombinant xylose-fermenting Saccharomyces cerevisiae strains.

Kato H, Suyama H, Yamada R, Hasunuma T, Kondo A.

Appl Microbiol Biotechnol. 2012 Jun;94(6):1585-92. doi: 10.1007/s00253-012-3914-6. Epub 2012 Mar 10.

PMID:
22406859
[PubMed - indexed for MEDLINE]
17.

Repeated-batch fermentations of xylose and glucose-xylose mixtures using a respiration-deficient Saccharomyces cerevisiae engineered for xylose metabolism.

Kim SR, Lee KS, Choi JH, Ha SJ, Kweon DH, Seo JH, Jin YS.

J Biotechnol. 2010 Nov;150(3):404-7. doi: 10.1016/j.jbiotec.2010.09.962. Epub 2010 Oct 8.

PMID:
20933550
[PubMed - indexed for MEDLINE]
18.

Saccharomyces cerevisiae engineered for xylose metabolism exhibits a respiratory response.

Jin YS, Laplaza JM, Jeffries TW.

Appl Environ Microbiol. 2004 Nov;70(11):6816-25.

PMID:
15528549
[PubMed - indexed for MEDLINE]
Free PMC Article
19.

Effect on product formation in recombinant Saccharomyces cerevisiae strains expressing different levels of xylose metabolic genes.

Bao X, Gao D, Qu Y, Wang Z, Walfridssion M, Hahn-Hagerbal B.

Chin J Biotechnol. 1997;13(4):225-31.

PMID:
9631257
[PubMed - indexed for MEDLINE]
20.

Xylose-metabolizing Saccharomyces cerevisiae strains overexpressing the TKL1 and TAL1 genes encoding the pentose phosphate pathway enzymes transketolase and transaldolase.

Walfridsson M, Hallborn J, Penttilä M, Keränen S, Hahn-Hägerdal B.

Appl Environ Microbiol. 1995 Dec;61(12):4184-90.

PMID:
8534086
[PubMed - indexed for MEDLINE]
Free PMC Article

Display Settings:

Format
Items per page
Sort by

Send to:

Choose Destination

Supplemental Content

Write to the Help Desk