Display Settings:

Format
Items per page
Sort by

Send to:

Choose Destination

Results: 1 to 20 of 86

1.

A tunable synthetic hydrogel system for culture of retinal ganglion cells and amacrine cells.

Hertz J, Robinson R, Valenzuela DA, Lavik EB, Goldberg JL.

Acta Biomater. 2013 Aug;9(8):7622-9. doi: 10.1016/j.actbio.2013.04.048. Epub 2013 May 3.

PMID:
23648573
[PubMed - indexed for MEDLINE]
Free PMC Article
2.

A library of tunable poly(ethylene glycol)/poly(L-lysine) hydrogels to investigate the material cues that influence neural stem cell differentiation.

Hynes SR, Rauch MF, Bertram JP, Lavik EB.

J Biomed Mater Res A. 2009 May;89(2):499-509. doi: 10.1002/jbm.a.31987.

PMID:
18435406
[PubMed - indexed for MEDLINE]
3.

Amacrine cell subtypes differ in their intrinsic neurite growth capacity.

Kunzevitzky NJ, Willeford KT, Feuer WJ, Almeida MV, Goldberg JL.

Invest Ophthalmol Vis Sci. 2013 Nov 15;54(12):7603-13. doi: 10.1167/iovs.13-12691.

PMID:
24130183
[PubMed - indexed for MEDLINE]
Free PMC Article
4.

Polylysine-modified PEG-based hydrogels to enhance the neuro-electrode interface.

Rao SS, Han N, Winter JO.

J Biomater Sci Polym Ed. 2011;22(4-6):611-25. doi: 10.1163/092050610X488241. Epub 2010 Jun 21.

PMID:
20566048
[PubMed - indexed for MEDLINE]
5.

Fabrication of micropatterned hydrogels for neural culture systems using dynamic mask projection photolithography.

Curley JL, Jennings SR, Moore MJ.

J Vis Exp. 2011 Feb 11;(48). pii: 2636. doi: 10.3791/2636.

PMID:
21372777
[PubMed - indexed for MEDLINE]
Free PMC Article
6.

Polylysine-functionalised thermoresponsive chitosan hydrogel for neural tissue engineering.

Crompton KE, Goud JD, Bellamkonda RV, Gengenbach TR, Finkelstein DI, Horne MK, Forsythe JS.

Biomaterials. 2007 Jan;28(3):441-9. Epub 2006 Sep 15.

PMID:
16978692
[PubMed - indexed for MEDLINE]
7.

How voltage-gated ion channels alter the functional properties of ganglion and amacrine cell dendrites.

Miller RF, Stenback K, Henderson D, Sikora M.

Arch Ital Biol. 2002 Oct;140(4):347-59. Review.

PMID:
12228988
[PubMed - indexed for MEDLINE]
8.

Biosynthetic hydrogel scaffolds made from fibrinogen and polyethylene glycol for 3D cell cultures.

Almany L, Seliktar D.

Biomaterials. 2005 May;26(15):2467-77.

PMID:
15585249
[PubMed - indexed for MEDLINE]
9.

Three-dimensional growth and function of neural tissue in degradable polyethylene glycol hydrogels.

Mahoney MJ, Anseth KS.

Biomaterials. 2006 Apr;27(10):2265-74. Epub 2005 Nov 28.

PMID:
16318872
[PubMed - indexed for MEDLINE]
10.

Co-culture of primary neural progenitor and endothelial cells in a macroporous gel promotes stable vascular networks in vivo.

Rauch MF, Michaud M, Xu H, Madri JA, Lavik EB.

J Biomater Sci Polym Ed. 2008;19(11):1469-85. doi: 10.1163/156856208786140409.

PMID:
18973724
[PubMed - indexed for MEDLINE]
11.

Enhancing neurite outgrowth from primary neurones and neural stem cells using thermoresponsive hydrogel scaffolds for the repair of spinal cord injury.

Nisbet DR, Moses D, Gengenbach TR, Forsythe JS, Finkelstein DI, Horne MK.

J Biomed Mater Res A. 2009 Apr;89(1):24-35. doi: 10.1002/jbm.a.31962.

PMID:
18404707
[PubMed - indexed for MEDLINE]
12.

An in situ forming collagen-PEG hydrogel for tissue regeneration.

Sargeant TD, Desai AP, Banerjee S, Agawu A, Stopek JB.

Acta Biomater. 2012 Jan;8(1):124-32. doi: 10.1016/j.actbio.2011.07.028. Epub 2011 Aug 26.

PMID:
21911086
[PubMed - indexed for MEDLINE]
13.

Development of porous PEG hydrogels that enable efficient, uniform cell-seeding and permit early neural process extension.

Namba RM, Cole AA, Bjugstad KB, Mahoney MJ.

Acta Biomater. 2009 Jul;5(6):1884-97. doi: 10.1016/j.actbio.2009.01.036. Epub 2009 Feb 1.

PMID:
19250891
[PubMed - indexed for MEDLINE]
14.

Tailorable cell culture platforms from enzymatically cross-linked multifunctional poly(ethylene glycol)-based hydrogels.

Menzies DJ, Cameron A, Munro T, Wolvetang E, Gr√łndahl L, Cooper-White JJ.

Biomacromolecules. 2013 Feb 11;14(2):413-23. doi: 10.1021/bm301652q. Epub 2013 Jan 15.

PMID:
23259935
[PubMed - indexed for MEDLINE]
15.

Photopolymerized poly(ethylene glycol)/poly(L-lysine) hydrogels for the delivery of neural progenitor cells.

Royce Hynes S, McGregor LM, Ford Rauch M, Lavik EB.

J Biomater Sci Polym Ed. 2007;18(8):1017-30.

PMID:
17705996
[PubMed - indexed for MEDLINE]
16.

Hyaluronic acid-poly-D-lysine-based three-dimensional hydrogel for traumatic brain injury.

Tian WM, Hou SP, Ma J, Zhang CL, Xu QY, Lee IS, Li HD, Spector M, Cui FZ.

Tissue Eng. 2005 Mar-Apr;11(3-4):513-25.

PMID:
15869430
[PubMed - indexed for MEDLINE]
17.

Robust and semi-interpenetrating hydrogels from poly(ethylene glycol) and collagen for elastomeric tissue scaffolds.

Chan BK, Wippich CC, Wu CJ, Sivasankar PM, Schmidt G.

Macromol Biosci. 2012 Nov;12(11):1490-501. doi: 10.1002/mabi.201200234. Epub 2012 Oct 15.

PMID:
23070957
[PubMed - indexed for MEDLINE]
18.

Long-term spatially defined coculture within three-dimensional photopatterned hydrogels.

Hammoudi TM, Lu H, Temenoff JS.

Tissue Eng Part C Methods. 2010 Dec;16(6):1621-8. doi: 10.1089/ten.TEC.2010.0146. Epub 2010 Jun 7.

PMID:
20412031
[PubMed - indexed for MEDLINE]
Free PMC Article
19.

Poly(ethylene glycol) hydrogel system supports preadipocyte viability, adhesion, and proliferation.

Patel PN, Gobin AS, West JL, Patrick CW Jr.

Tissue Eng. 2005 Sep-Oct;11(9-10):1498-505.

PMID:
16259604
[PubMed - indexed for MEDLINE]
20.

Rapid prototyping of tissue-engineering constructs, using photopolymerizable hydrogels and stereolithography.

Dhariwala B, Hunt E, Boland T.

Tissue Eng. 2004 Sep-Oct;10(9-10):1316-22.

PMID:
15588392
[PubMed - indexed for MEDLINE]

Display Settings:

Format
Items per page
Sort by

Send to:

Choose Destination

Supplemental Content

Write to the Help Desk