Format
Sort by

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 105

1.

Effect of bromochloromethane and fumarate on phylogenetic diversity of the formyltetrahydrofolate synthetase gene in bovine rumen.

Mitsumori M, Matsui H, Tajima K, Shinkai T, Takenaka A, Denman SE, McSweeney CS.

Anim Sci J. 2014 Jan;85(1):25-31. doi: 10.1111/asj.12072. Epub 2013 May 3.

PMID:
23638678
2.

Presence of novel, potentially homoacetogenic bacteria in the rumen as determined by analysis of formyltetrahydrofolate synthetase sequences from ruminants.

Henderson G, Naylor GE, Leahy SC, Janssen PH.

Appl Environ Microbiol. 2010 Apr;76(7):2058-66. doi: 10.1128/AEM.02580-09. Epub 2010 Jan 29.

3.

Diversity of the formyltetrahydrofolate synthetase gene (fhs), a key enzyme for reductive acetogenesis, in the bovine rumen.

Matsui H, Kojima N, Tajima K.

Biosci Biotechnol Biochem. 2008 Dec;72(12):3273-6. Epub 2008 Dec 7.

4.

Functional gene analysis suggests different acetogen populations in the bovine rumen and tammar wallaby forestomach.

Gagen EJ, Denman SE, Padmanabha J, Zadbuke S, Al Jassim R, Morrison M, McSweeney CS.

Appl Environ Microbiol. 2010 Dec;76(23):7785-95. doi: 10.1128/AEM.01679-10. Epub 2010 Oct 1.

5.

Inhibition of methanogens by bromochloromethane: effects on microbial communities and rumen fermentation using batch and continuous fermentations.

Goel G, Makkar HP, Becker K.

Br J Nutr. 2009 May;101(10):1484-92. doi: 10.1017/S0007114508076198. Epub 2009 Feb 25.

PMID:
19243639
6.

Response of the rumen archaeal and bacterial populations to anti-methanogenic organosulphur compounds in continuous-culture fermenters.

Martínez-Fernández G, Abecia L, Martín-García AI, Ramos-Morales E, Denman SE, Newbold CJ, Molina-Alcaide E, Yáñez-Ruiz DR.

FEMS Microbiol Ecol. 2015 Aug;91(8):fiv079. doi: 10.1093/femsec/fiv079. Epub 2015 Jul 15.

7.
8.

Diversity of the formyltetrahydrofolate synthetase (FTHFS) gene in the proximal and mid ostrich colon.

Matsui H, Yoneda S, Ban-Tokuda T, Wakita M.

Curr Microbiol. 2011 Jan;62(1):1-6. doi: 10.1007/s00284-010-9661-y. Epub 2010 May 11.

PMID:
20458481
9.

Effect of bromochloromethane on methane emission, rumen fermentation pattern, milk yield, and fatty acid profile in lactating dairy goats.

Abecia L, Toral PG, Martín-García AI, Martínez G, Tomkins NW, Molina-Alcaide E, Newbold CJ, Yáñez-Ruiz DR.

J Dairy Sci. 2012 Apr;95(4):2027-36. doi: 10.3168/jds.2011-4831.

PMID:
22459848
10.

Nutritional intervention in early life to manipulate rumen microbial colonization and methane output by kid goats postweaning.

Abecia L, Martín-García AI, Martínez G, Newbold CJ, Yáñez-Ruiz DR.

J Anim Sci. 2013 Oct;91(10):4832-40. doi: 10.2527/jas.2012-6142. Epub 2013 Aug 21. Erratum in: J Anim Sci.2013 Nov;91(11):5544. Dosage error in article text.

11.

Hydrogenotrophic culture enrichment reveals rumen Lachnospiraceae and Ruminococcaceae acetogens and hydrogen-responsive Bacteroidetes from pasture-fed cattle.

Gagen EJ, Padmanabha J, Denman SE, McSweeney CS.

FEMS Microbiol Lett. 2015 Jul;362(14). pii: fnv104. doi: 10.1093/femsle/fnv104. Epub 2015 Jun 24.

12.

Quantitation and diversity analysis of ruminal methanogenic populations in response to the antimethanogenic compound bromochloromethane.

Denman SE, Tomkins NW, McSweeney CS.

FEMS Microbiol Ecol. 2007 Dec;62(3):313-22. Epub 2007 Oct 19.

13.

Responses in digestion, rumen fermentation and microbial populations to inhibition of methane formation by a halogenated methane analogue.

Mitsumori M, Shinkai T, Takenaka A, Enishi O, Higuchi K, Kobayashi Y, Nonaka I, Asanuma N, Denman SE, McSweeney CS.

Br J Nutr. 2012 Aug;108(3):482-91. doi: 10.1017/S0007114511005794. Epub 2011 Nov 8.

PMID:
22059589
14.

In vitro-in vivo study on the effects of plant compounds on rumen fermentation, microbial abundances and methane emissions in goats.

Martínez-Fernández G, Abecia L, Martín-García AI, Ramos-Morales E, Hervás G, Molina-Alcaide E, Yáñez-Ruiz DR.

Animal. 2013 Dec;7(12):1925-34. doi: 10.1017/S1751731113001699.

PMID:
24237672
15.

Community-level analysis: key genes of CO2-reductive acetogenesis.

Lovell CR, Leaphart AB.

Methods Enzymol. 2005;397:454-69.

PMID:
16260309
16.

Diversity of fumarate reducing bacteria in the bovine rumen revealed by culture dependent and independent approaches.

Hattori K, Matsui H.

Anaerobe. 2008 Apr;14(2):87-93. doi: 10.1016/j.anaerobe.2007.12.002. Epub 2007 Dec 28.

PMID:
18276172
17.

Diversity of formyltetrahydrofolate synthetases in the guts of the wood-feeding cockroach Cryptocercus punctulatus and the omnivorous cockroach Periplaneta americana.

Ottesen EA, Leadbetter JR.

Appl Environ Microbiol. 2010 Jul;76(14):4909-13. doi: 10.1128/AEM.00299-10. Epub 2010 May 21.

19.

Effect of fumarate reducing bacteria on in vitro rumen fermentation, methane mitigation and microbial diversity.

Mamuad L, Kim SH, Jeong CD, Choi YJ, Jeon CO, Lee SS.

J Microbiol. 2014 Feb;52(2):120-8. doi: 10.1007/s12275-014-3518-1. Epub 2014 Feb 1.

PMID:
24500476
20.

Formyltetrahydrofolate synthetase gene diversity in the guts of higher termites with different diets and lifestyles.

Ottesen EA, Leadbetter JR.

Appl Environ Microbiol. 2011 May;77(10):3461-7. doi: 10.1128/AEM.02657-10. Epub 2011 Mar 25.

Items per page

Supplemental Content

Write to the Help Desk