Format
Items per page
Sort by

Send to:

Choose Destination

Results: 1 to 20 of 105

Similar articles for PubMed (Select 23635107)

1.

Analytic second derivatives of the energy in the fragment molecular orbital method.

Nakata H, Nagata T, Fedorov DG, Yokojima S, Kitaura K, Nakamura S.

J Chem Phys. 2013 Apr 28;138(16):164103. doi: 10.1063/1.4800990.

PMID:
23635107
2.

Analytic second derivative of the energy for density functional theory based on the three-body fragment molecular orbital method.

Nakata H, Fedorov DG, Zahariev F, Schmidt MW, Kitaura K, Gordon MS, Nakamura S.

J Chem Phys. 2015 Mar 28;142(12):124101. doi: 10.1063/1.4915068.

PMID:
25833559
3.

The fragment molecular orbital method for geometry optimizations of polypeptides and proteins.

Fedorov DG, Ishida T, Uebayasi M, Kitaura K.

J Phys Chem A. 2007 Apr 12;111(14):2722-32. Epub 2007 Mar 16.

PMID:
17388363
4.

Analytic gradient for second order Møller-Plesset perturbation theory with the polarizable continuum model based on the fragment molecular orbital method.

Nagata T, Fedorov DG, Li H, Kitaura K.

J Chem Phys. 2012 May 28;136(20):204112. doi: 10.1063/1.4714601.

PMID:
22667545
5.

Unrestricted Hartree-Fock based on the fragment molecular orbital method: energy and its analytic gradient.

Nakata H, Fedorov DG, Nagata T, Yokojima S, Ogata K, Kitaura K, Nakamura S.

J Chem Phys. 2012 Jul 28;137(4):044110. doi: 10.1063/1.4737860.

PMID:
22852600
6.

Higher order alchemical derivatives from coupled perturbed self-consistent field theory.

Lesiuk M, Balawender R, Zachara J.

J Chem Phys. 2012 Jan 21;136(3):034104. doi: 10.1063/1.3674163.

PMID:
22280741
7.

A combined effective fragment potential-fragment molecular orbital method. I. The energy expression and initial applications.

Nagata T, Fedorov DG, Kitaura K, Gordon MS.

J Chem Phys. 2009 Jul 14;131(2):024101. doi: 10.1063/1.3156313.

PMID:
19603964
8.

Experimental and computational study on molecular structure and vibrational analysis of a modified biomolecule: 5-bromo-2'-deoxyuridine.

Cırak C, Sert Y, Ucun F.

Spectrochim Acta A Mol Biomol Spectrosc. 2012 Jun 15;92:406-14. doi: 10.1016/j.saa.2012.02.053. Epub 2012 Mar 5.

PMID:
22459894
9.

Anharmonic force field and vibrational dynamics of CH2F2 up to 5000 cm(-1) studied by Fourier transform infrared spectroscopy and state-of-the-art ab initio calculations.

Tasinato N, Regini G, Stoppa P, Pietropolli Charmet A, Gambi A.

J Chem Phys. 2012 Jun 7;136(21):214302. doi: 10.1063/1.4720502.

PMID:
22697538
10.

Effective fragment molecular orbital method: a merger of the effective fragment potential and fragment molecular orbital methods.

Steinmann C, Fedorov DG, Jensen JH.

J Phys Chem A. 2010 Aug 26;114(33):8705-12. doi: 10.1021/jp101498m.

PMID:
20446697
11.

Energy gradients in combined fragment molecular orbital and polarizable continuum model (FMO/PCM) calculation.

Li H, Fedorov DG, Nagata T, Kitaura K, Jensen JH, Gordon MS.

J Comput Chem. 2010 Mar;31(4):778-90. doi: 10.1002/jcc.21363.

PMID:
19569184
12.

Covalent bond fragmentation suitable to describe solids in the fragment molecular orbital method.

Fedorov DG, Jensen JH, Deka RC, Kitaura K.

J Phys Chem A. 2008 Nov 20;112(46):11808-16. doi: 10.1021/jp805435n. Epub 2008 Oct 23.

PMID:
18942816
13.

Prediction of cyclin-dependent kinase 2 inhibitor potency using the fragment molecular orbital method.

Mazanetz MP, Ichihara O, Law RJ, Whittaker M.

J Cheminform. 2011 Jan 10;3(1):2. doi: 10.1186/1758-2946-3-2.

14.

Analytic energy gradient for second-order Møller-Plesset perturbation theory based on the fragment molecular orbital method.

Nagata T, Fedorov DG, Ishimura K, Kitaura K.

J Chem Phys. 2011 Jul 28;135(4):044110. doi: 10.1063/1.3611020.

PMID:
21806093
15.

Vibrational analysis of 4-chloro-3-nitrobenzonitrile by quantum chemical calculations.

Sert Y, Çırak Ç, Ucun F.

Spectrochim Acta A Mol Biomol Spectrosc. 2013 Apr 15;107:248-55. doi: 10.1016/j.saa.2013.01.046. Epub 2013 Jan 31.

PMID:
23434551
16.

Fragment Molecular Orbital method-based Molecular Dynamics (FMO-MD) as a simulator for chemical reactions in explicit solvation.

Komeiji Y, Ishikawa T, Mochizuki Y, Yamataka H, Nakano T.

J Comput Chem. 2009 Jan 15;30(1):40-50. doi: 10.1002/jcc.21025.

PMID:
18504778
18.

Accuracy of the three-body fragment molecular orbital method applied to Møller-Plesset perturbation theory.

Fedorov DG, Ishimura K, Ishida T, Kitaura K, Pulay P, Nagase S.

J Comput Chem. 2007 Jul 15;28(9):1476-84.

PMID:
17330884
19.

Proceedings of the Second Workshop on Theory meets Industry (Erwin-Schrödinger-Institute (ESI), Vienna, Austria, 12-14 June 2007).

Hafner J.

J Phys Condens Matter. 2008 Feb 13;20(6):060301. doi: 10.1088/0953-8984/20/06/060301. Epub 2008 Jan 24.

PMID:
21693862
20.

Accurate ab initio and "hybrid" potential energy surfaces, intramolecular vibrational energies, and classical ir spectrum of the water dimer.

Shank A, Wang Y, Kaledin A, Braams BJ, Bowman JM.

J Chem Phys. 2009 Apr 14;130(14):144314. doi: 10.1063/1.3112403.

PMID:
19368452
Format
Items per page
Sort by

Send to:

Choose Destination

Supplemental Content

Write to the Help Desk