Display Settings:

Format
Items per page
Sort by

Send to:

Choose Destination

Results: 1 to 20 of 117

1.

The stray capacitance effect in Kelvin probe force microscopy using FM, AM and heterodyne AM modes.

Ma ZM, Kou L, Naitoh Y, Li YJ, Sugawara Y.

Nanotechnology. 2013 Jun 7;24(22):225701. doi: 10.1088/0957-4484/24/22/225701. Epub 2013 Apr 30.

PMID:
23633495
[PubMed]
2.

Potential sensitivities in frequency modulation and heterodyne amplitude modulation Kelvin probe force microscopes.

Ma ZM, Mu JL, Tang J, Xue H, Zhang H, Xue CY, Liu J, Li YJ.

Nanoscale Res Lett. 2013 Dec 18;8(1):532. doi: 10.1186/1556-276X-8-532.

PMID:
24350866
[PubMed]
Free PMC Article
3.

On the relevance of the atomic-scale contact potential difference by amplitude-modulation and frequency-modulation Kelvin probe force microscopy.

Nony L, Bocquet F, Loppacher C, Glatzel T.

Nanotechnology. 2009 Jul 1;20(26):264014. doi: 10.1088/0957-4484/20/26/264014. Epub 2009 Jun 10.

PMID:
19509441
[PubMed]
4.

Reconstruction of surface potential from Kelvin probe force microscopy images.

Cohen G, Halpern E, Nanayakkara SU, Luther JM, Held C, Bennewitz R, Boag A, Rosenwaks Y.

Nanotechnology. 2013 Jul 26;24(29):295702. doi: 10.1088/0957-4484/24/29/295702. Epub 2013 Jun 27.

PMID:
23807266
[PubMed]
5.

Determination of the local contact potential difference of PTCDA on NaCl: a comparison of techniques.

Burke SA, LeDue JM, Miyahara Y, Topple JM, Fostner S, Grütter P.

Nanotechnology. 2009 Jul 1;20(26):264012. doi: 10.1088/0957-4484/20/26/264012. Epub 2009 Jun 10.

PMID:
19509452
[PubMed - indexed for MEDLINE]
6.

Kelvin probe force microscopy in application to biomolecular films: frequency modulation, amplitude modulation, and lift mode.

Moores B, Hane F, Eng L, Leonenko Z.

Ultramicroscopy. 2010 May;110(6):708-11. doi: 10.1016/j.ultramic.2010.02.036. Epub 2010 Mar 16.

PMID:
20363077
[PubMed - indexed for MEDLINE]
7.

Atomic contact potential variations of Si(111)-7 x 7 analyzed by Kelvin probe force microscopy.

Kawai S, Glatzel T, Hug HJ, Meyer E.

Nanotechnology. 2010 Jun 18;21(24):245704. doi: 10.1088/0957-4484/21/24/245704. Epub 2010 May 20.

PMID:
20484786
[PubMed]
8.

New insights on atomic-resolution frequency-modulation Kelvin-probe force-microscopy imaging of semiconductors.

Sadewasser S, Jelinek P, Fang CK, Custance O, Yamada Y, Sugimoto Y, Abe M, Morita S.

Phys Rev Lett. 2009 Dec 31;103(26):266103. Epub 2009 Dec 28.

PMID:
20366324
[PubMed]
9.

The role of the cantilever in Kelvin probe force microscopy measurements.

Elias G, Glatzel T, Meyer E, Schwarzman A, Boag A, Rosenwaks Y.

Beilstein J Nanotechnol. 2011;2:252-60. doi: 10.3762/bjnano.2.29. Epub 2011 May 18.

PMID:
21977437
[PubMed]
Free PMC Article
10.

Open-loop band excitation Kelvin probe force microscopy.

Guo S, Kalinin SV, Jesse S.

Nanotechnology. 2012 Mar 30;23(12):125704. doi: 10.1088/0957-4484/23/12/125704. Epub 2012 Mar 9.

PMID:
22407131
[PubMed]
11.

The importance of cantilever dynamics in the interpretation of Kelvin probe force microscopy.

Satzinger KJ, Brown KA, Westervelt RM.

J Appl Phys. 2012 Sep 15;112(6):64510. Epub 2012 Sep 26.

PMID:
23093809
[PubMed]
Free PMC Article
12.

High spatial resolution Kelvin probe force microscopy with coaxial probes.

Brown KA, Satzinger KJ, Westervelt RM.

Nanotechnology. 2012 Mar 23;23(11):115703. doi: 10.1088/0957-4484/23/11/115703. Epub 2012 Feb 28.

PMID:
22369870
[PubMed]
13.

Theoretical simulation of Kelvin probe force microscopy for Si surfaces by taking account of chemical forces.

Tsukada M, Masago A, Shimizu M.

J Phys Condens Matter. 2012 Feb 29;24(8):084002. doi: 10.1088/0953-8984/24/8/084002. Epub 2012 Feb 7.

PMID:
22309993
[PubMed]
14.

Open loop Kelvin probe force microscopy with single and multi-frequency excitation.

Collins L, Kilpatrick JI, Weber SA, Tselev A, Vlassiouk IV, Ivanov IN, Jesse S, Kalinin SV, Rodriguez BJ.

Nanotechnology. 2013 Nov 29;24(47):475702. doi: 10.1088/0957-4484/24/47/475702. Epub 2013 Oct 31.

PMID:
24176878
[PubMed]
15.

A resolution study for electrostatic force microscopy on bimetallic samples using the boundary element method.

Shen Y, Lee M, Lee W, Barnett DM, Pinsky PM, Prinz FB.

Nanotechnology. 2008 Jan 23;19(3):035710. doi: 10.1088/0957-4484/19/03/035710. Epub 2007 Dec 13.

PMID:
21817595
[PubMed]
16.

Contrast formation in Kelvin probe force microscopy of single π-conjugated molecules.

Schuler B, Liu SX, Geng Y, Decurtins S, Meyer G, Gross L.

Nano Lett. 2014 Jun 11;14(6):3342-6. doi: 10.1021/nl500805x. Epub 2014 May 28.

PMID:
24849457
[PubMed - in process]
17.

Standardization of surface potential measurements of graphene domains.

Panchal V, Pearce R, Yakimova R, Tzalenchuk A, Kazakova O.

Sci Rep. 2013;3:2597. doi: 10.1038/srep02597.

PMID:
24008915
[PubMed - indexed for MEDLINE]
Free PMC Article
18.

Practical aspects of single-pass scan Kelvin probe force microscopy.

Li G, Mao B, Lan F, Liu L.

Rev Sci Instrum. 2012 Nov;83(11):113701. doi: 10.1063/1.4761922.

PMID:
23206065
[PubMed]
19.

Determination of effective tip geometries in Kelvin probe force microscopy on thin insulating films on metals.

Glatzel T, Zimmerli L, Koch S, Such B, Kawai S, Meyer E.

Nanotechnology. 2009 Jul 1;20(26):264016. doi: 10.1088/0957-4484/20/26/264016. Epub 2009 Jun 10.

PMID:
19509456
[PubMed]
20.

Force gradient sensitive detection in lift-mode Kelvin probe force microscopy.

Ziegler D, Stemmer A.

Nanotechnology. 2011 Feb 18;22(7):075501. doi: 10.1088/0957-4484/22/7/075501. Epub 2011 Jan 14.

PMID:
21233549
[PubMed]

Display Settings:

Format
Items per page
Sort by

Send to:

Choose Destination

Supplemental Content

Write to the Help Desk