Format
Items per page
Sort by

Send to:

Choose Destination

Links from PubMed

Items: 1 to 20 of 289

1.

Cellulose and collagen derived micro-nano structured scaffolds for bone tissue engineering.

Aravamudhan A, Ramos DM, Nip J, Harmon MD, James R, Deng M, Laurencin CT, Yu X, Kumbar SG.

J Biomed Nanotechnol. 2013 Apr;9(4):719-31.

PMID:
23621034
2.

Preparation, characterization and in vitro analysis of novel structured nanofibrous scaffolds for bone tissue engineering.

Wang J, Yu X.

Acta Biomater. 2010 Aug;6(8):3004-12. doi: 10.1016/j.actbio.2010.01.045. Epub 2010 Feb 6.

PMID:
20144749
3.

Functionalization of chitosan/poly(lactic acid-glycolic acid) sintered microsphere scaffolds via surface heparinization for bone tissue engineering.

Jiang T, Khan Y, Nair LS, Abdel-Fattah WI, Laurencin CT.

J Biomed Mater Res A. 2010 Jun 1;93(3):1193-208. doi: 10.1002/jbm.a.32615.

PMID:
19777575
4.

Effect of self-assembled nanofibrous silk/polycaprolactone layer on the osteoconductivity and mechanical properties of biphasic calcium phosphate scaffolds.

Roohani-Esfahani SI, Lu ZF, Li JJ, Ellis-Behnke R, Kaplan DL, Zreiqat H.

Acta Biomater. 2012 Jan;8(1):302-12. doi: 10.1016/j.actbio.2011.10.009. Epub 2011 Oct 13.

PMID:
22023750
5.

Spiral-structured, nanofibrous, 3D scaffolds for bone tissue engineering.

Wang J, Valmikinathan CM, Liu W, Laurencin CT, Yu X.

J Biomed Mater Res A. 2010 May;93(2):753-62. doi: 10.1002/jbm.a.32591.

PMID:
19642211
6.

Collagen-gelatin-genipin-hydroxyapatite composite scaffolds colonized by human primary osteoblasts are suitable for bone tissue engineering applications: in vitro evidences.

Vozzi G, Corallo C, Carta S, Fortina M, Gattazzo F, Galletti M, Giordano N.

J Biomed Mater Res A. 2014 May;102(5):1415-21. doi: 10.1002/jbm.a.34823. Epub 2013 Jun 20.

PMID:
23775901
7.

Mechanical properties, biological activity and protein controlled release by poly(vinyl alcohol)-bioglass/chitosan-collagen composite scaffolds: a bone tissue engineering applications.

Pon-On W, Charoenphandhu N, Teerapornpuntakit J, Thongbunchoo J, Krishnamra N, Tang IM.

Mater Sci Eng C Mater Biol Appl. 2014 May 1;38:63-72. doi: 10.1016/j.msec.2014.01.040. Epub 2014 Jan 29.

PMID:
24656353
8.

An in vitro assessment of a cell-containing collagenous extracellular matrix-like scaffold for bone tissue engineering.

Pedraza CE, Marelli B, Chicatun F, McKee MD, Nazhat SN.

Tissue Eng Part A. 2010 Mar;16(3):781-93. doi: 10.1089/ten.TEA.2009.0351.

PMID:
19778181
9.

Low-pressure foaming: a novel method for the fabrication of porous scaffolds for tissue engineering.

Chung EJ, Sugimoto M, Koh JL, Ameer GA.

Tissue Eng Part C Methods. 2012 Feb;18(2):113-21. doi: 10.1089/ten.TEC.2011.0289. Epub 2011 Dec 22.

PMID:
21933018
10.

Porous nano-HA/collagen/PLLA scaffold containing chitosan microspheres for controlled delivery of synthetic peptide derived from BMP-2.

Niu X, Feng Q, Wang M, Guo X, Zheng Q.

J Control Release. 2009 Mar 4;134(2):111-7. doi: 10.1016/j.jconrel.2008.11.020. Epub 2008 Dec 3.

PMID:
19100794
11.

Polycaprolactone nanofiber interspersed collagen type-I scaffold for bone regeneration: a unique injectable osteogenic scaffold.

Baylan N, Bhat S, Ditto M, Lawrence JG, Lecka-Czernik B, Yildirim-Ayan E.

Biomed Mater. 2013 Aug;8(4):045011. doi: 10.1088/1748-6041/8/4/045011. Epub 2013 Jun 27.

PMID:
23804651
12.

In vitro analysis and mechanical properties of twin screw extruded single-layered and coextruded multilayered poly(caprolactone) scaffolds seeded with human fetal osteoblasts for bone tissue engineering.

Ergun A, Yu X, Valdevit A, Ritter A, Kalyon DM.

J Biomed Mater Res A. 2011 Dec 1;99(3):354-66. doi: 10.1002/jbm.a.33190. Epub 2011 Aug 23.

PMID:
22021183
14.

Pore size regulates cell and tissue interactions with PLGA-CaP scaffolds used for bone engineering.

Sicchieri LG, Crippa GE, de Oliveira PT, Beloti MM, Rosa AL.

J Tissue Eng Regen Med. 2012 Feb;6(2):155-62. doi: 10.1002/term.422. Epub 2011 Mar 28.

PMID:
21446054
15.

Embedded silica nanoparticles in poly(caprolactone) nanofibrous scaffolds enhanced osteogenic potential for bone tissue engineering.

Ganesh N, Jayakumar R, Koyakutty M, Mony U, Nair SV.

Tissue Eng Part A. 2012 Sep;18(17-18):1867-81. doi: 10.1089/ten.TEA.2012.0167.

PMID:
22725098
16.

Physicochemical characterization and biocompatibility in vitro of biphasic calcium phosphate/polyvinyl alcohol scaffolds prepared by freeze-drying method for bone tissue engineering applications.

Nie L, Chen D, Suo J, Zou P, Feng S, Yang Q, Yang S, Ye S.

Colloids Surf B Biointerfaces. 2012 Dec 1;100:169-76. doi: 10.1016/j.colsurfb.2012.04.046. Epub 2012 May 31.

PMID:
22766294
17.

Development of silk-based scaffolds for tissue engineering of bone from human adipose-derived stem cells.

Correia C, Bhumiratana S, Yan LP, Oliveira AL, Gimble JM, Rockwood D, Kaplan DL, Sousa RA, Reis RL, Vunjak-Novakovic G.

Acta Biomater. 2012 Jul;8(7):2483-92. doi: 10.1016/j.actbio.2012.03.019. Epub 2012 Mar 13.

18.

In vitro assessment of three-dimensionally plotted nagelschmidtite bioceramic scaffolds with varied macropore morphologies.

Xu M, Zhai D, Chang J, Wu C.

Acta Biomater. 2014 Jan;10(1):463-76. doi: 10.1016/j.actbio.2013.09.011. Epub 2013 Sep 23.

PMID:
24071000
19.

The influence hydroxyapatite nanoparticle shape and size on the properties of biphasic calcium phosphate scaffolds coated with hydroxyapatite-PCL composites.

Roohani-Esfahani SI, Nouri-Khorasani S, Lu Z, Appleyard R, Zreiqat H.

Biomaterials. 2010 Jul;31(21):5498-509. doi: 10.1016/j.biomaterials.2010.03.058. Epub 2010 Apr 15.

PMID:
20398935
20.

Biocompatibility and osteogenesis of biomimetic Bioglass-Collagen-Phosphatidylserine composite scaffolds for bone tissue engineering.

Xu C, Su P, Chen X, Meng Y, Yu W, Xiang AP, Wang Y.

Biomaterials. 2011 Feb;32(4):1051-8. doi: 10.1016/j.biomaterials.2010.09.068. Epub 2010 Oct 25.

PMID:
20980051
Format
Items per page
Sort by

Send to:

Choose Destination

Supplemental Content

Write to the Help Desk