Format
Sort by

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 230

1.

Directed evolution of a highly efficient cellobiose utilizing pathway in an industrial Saccharomyces cerevisiae strain.

Yuan Y, Zhao H.

Biotechnol Bioeng. 2013 Nov;110(11):2874-81. doi: 10.1002/bit.24946. Epub 2013 Jun 27.

PMID:
23616289
2.

Combinatorial design of a highly efficient xylose-utilizing pathway in Saccharomyces cerevisiae for the production of cellulosic biofuels.

Kim B, Du J, Eriksen DT, Zhao H.

Appl Environ Microbiol. 2013 Feb;79(3):931-41. doi: 10.1128/AEM.02736-12. Epub 2012 Nov 26.

3.

Directed evolution of a cellodextrin transporter for improved biofuel production under anaerobic conditions in Saccharomyces cerevisiae.

Lian J, Li Y, HamediRad M, Zhao H.

Biotechnol Bioeng. 2014 Aug;111(8):1521-31. doi: 10.1002/bit.25214. Epub 2014 Mar 11.

PMID:
24519319
4.

2,3-butanediol production from cellobiose by engineered Saccharomyces cerevisiae.

Nan H, Seo SO, Oh EJ, Seo JH, Cate JH, Jin YS.

Appl Microbiol Biotechnol. 2014 Jun;98(12):5757-64. doi: 10.1007/s00253-014-5683-x. Epub 2014 Apr 18.

PMID:
24743979
5.

Customized optimization of metabolic pathways by combinatorial transcriptional engineering.

Yuan Y, Du J, Zhao H.

Methods Mol Biol. 2013;985:177-209. doi: 10.1007/978-1-62703-299-5_10.

PMID:
23417805
6.

Continuous co-fermentation of cellobiose and xylose by engineered Saccharomyces cerevisiae.

Ha SJ, Kim SR, Kim H, Du J, Cate JH, Jin YS.

Bioresour Technol. 2013 Dec;149:525-31. doi: 10.1016/j.biortech.2013.09.082. Epub 2013 Sep 27.

PMID:
24140899
7.

Customized optimization of metabolic pathways by combinatorial transcriptional engineering.

Du J, Yuan Y, Si T, Lian J, Zhao H.

Nucleic Acids Res. 2012 Oct;40(18):e142. doi: 10.1093/nar/gks549. Epub 2012 Jun 19.

8.

Directed evolution of a cellobiose utilization pathway in Saccharomyces cerevisiae by simultaneously engineering multiple proteins.

Eriksen DT, Hsieh PC, Lynn P, Zhao H.

Microb Cell Fact. 2013 Jun 26;12:61. doi: 10.1186/1475-2859-12-61.

9.

Simultaneous utilization of cellobiose, xylose, and acetic acid from lignocellulosic biomass for biofuel production by an engineered yeast platform.

Wei N, Oh EJ, Million G, Cate JH, Jin YS.

ACS Synth Biol. 2015 Jun 19;4(6):707-13. doi: 10.1021/sb500364q. Epub 2015 Jan 27.

PMID:
25587748
10.

Industrial systems biology of Saccharomyces cerevisiae enables novel succinic acid cell factory.

Otero JM, Cimini D, Patil KR, Poulsen SG, Olsson L, Nielsen J.

PLoS One. 2013;8(1):e54144. doi: 10.1371/journal.pone.0054144. Epub 2013 Jan 21.

11.

Development of an industrial ethanol-producing yeast strain for efficient utilization of cellobiose.

Guo ZP, Zhang L, Ding ZY, Gu ZH, Shi GY.

Enzyme Microb Technol. 2011 Jun 10;49(1):105-12. doi: 10.1016/j.enzmictec.2011.02.008. Epub 2011 Mar 3.

PMID:
22112279
12.

Optimization of CDT-1 and XYL1 expression for balanced co-production of ethanol and xylitol from cellobiose and xylose by engineered Saccharomyces cerevisiae.

Zha J, Li BZ, Shen MH, Hu ML, Song H, Yuan YJ.

PLoS One. 2013 Jul 2;8(7):e68317. doi: 10.1371/journal.pone.0068317. Print 2013.

13.

Engineered Saccharomyces cerevisiae capable of simultaneous cellobiose and xylose fermentation.

Ha SJ, Galazka JM, Kim SR, Choi JH, Yang X, Seo JH, Glass NL, Cate JH, Jin YS.

Proc Natl Acad Sci U S A. 2011 Jan 11;108(2):504-9. doi: 10.1073/pnas.1010456108. Epub 2010 Dec 27.

14.

An evaluation of cellulose saccharification and fermentation with an engineered Saccharomyces cerevisiae capable of cellobiose and xylose utilization.

Fox JM, Levine SE, Blanch HW, Clark DS.

Biotechnol J. 2012 Mar;7(3):361-73. doi: 10.1002/biot.201100209.

PMID:
22228702
15.

Cofermentation of cellobiose and galactose by an engineered Saccharomyces cerevisiae strain.

Ha SJ, Wei Q, Kim SR, Galazka JM, Cate JH, Jin YS.

Appl Environ Microbiol. 2011 Aug 15;77(16):5822-5. doi: 10.1128/AEM.05228-11. Epub 2011 Jun 24. Erratum in: Appl Environ Microbiol. 2011 Oct;77(20):7438. Cate, Jamie [corrected to Cate, Jamie H D].

16.

Strain engineering of Saccharomyces cerevisiae for enhanced xylose metabolism.

Kim SR, Park YC, Jin YS, Seo JH.

Biotechnol Adv. 2013 Nov;31(6):851-61. doi: 10.1016/j.biotechadv.2013.03.004. Epub 2013 Mar 21. Review.

PMID:
23524005
17.

Gene Amplification on Demand Accelerates Cellobiose Utilization in Engineered Saccharomyces cerevisiae.

Oh EJ, Skerker JM, Kim SR, Wei N, Turner TL, Maurer MJ, Arkin AP, Jin YS.

Appl Environ Microbiol. 2016 May 31;82(12):3631-9. doi: 10.1128/AEM.00410-16. Print 2016 Jun 15.

PMID:
27084006
18.

Improved galactose fermentation of Saccharomyces cerevisiae through inverse metabolic engineering.

Lee KS, Hong ME, Jung SC, Ha SJ, Yu BJ, Koo HM, Park SM, Seo JH, Kweon DH, Park JC, Jin YS.

Biotechnol Bioeng. 2011 Mar;108(3):621-31. doi: 10.1002/bit.22988. Epub 2010 Nov 12.

PMID:
21246509
19.

Enhanced xylitol production through simultaneous co-utilization of cellobiose and xylose by engineered Saccharomyces cerevisiae.

Oh EJ, Ha SJ, Rin Kim S, Lee WH, Galazka JM, Cate JH, Jin YS.

Metab Eng. 2013 Jan;15:226-34. doi: 10.1016/j.ymben.2012.09.003. Epub 2012 Oct 24.

PMID:
23103205
20.

Engineering of Saccharomyces cerevisiae for efficient anaerobic alcoholic fermentation of L-arabinose.

Wisselink HW, Toirkens MJ, del Rosario Franco Berriel M, Winkler AA, van Dijken JP, Pronk JT, van Maris AJ.

Appl Environ Microbiol. 2007 Aug;73(15):4881-91. Epub 2007 Jun 1.

Items per page

Supplemental Content

Write to the Help Desk