Format
Items per page
Sort by

Send to:

Choose Destination

Results: 1 to 20 of 147

Similar articles for PubMed (Select 23613453)

1.

Computational evaluation of Synechococcus sp. PCC 7002 metabolism for chemical production.

Vu TT, Hill EA, Kucek LA, Konopka AE, Beliaev AS, Reed JL.

Biotechnol J. 2013 May;8(5):619-30. doi: 10.1002/biot.201200315. Epub 2013 Apr 24.

PMID:
23613453
2.

Engineering Synechococcus elongatus PCC 7942 for continuous growth under diurnal conditions.

McEwen JT, Machado IM, Connor MR, Atsumi S.

Appl Environ Microbiol. 2013 Mar;79(5):1668-75. doi: 10.1128/AEM.03326-12. Epub 2012 Dec 28.

3.

Physiological effects of free fatty acid production in genetically engineered Synechococcus elongatus PCC 7942.

Ruffing AM, Jones HD.

Biotechnol Bioeng. 2012 Sep;109(9):2190-9. doi: 10.1002/bit.24509. Epub 2012 Apr 9.

4.

Glycogen production for biofuels by the euryhaline cyanobacteria Synechococcus sp. strain PCC 7002 from an oceanic environment.

Aikawa S, Nishida A, Ho SH, Chang JS, Hasunuma T, Kondo A.

Biotechnol Biofuels. 2014 Jun 11;7:88. doi: 10.1186/1754-6834-7-88. eCollection 2014.

5.

Redirecting reductant flux into hydrogen production via metabolic engineering of fermentative carbon metabolism in a cyanobacterium.

McNeely K, Xu Y, Bennette N, Bryant DA, Dismukes GC.

Appl Environ Microbiol. 2010 Aug;76(15):5032-8. doi: 10.1128/AEM.00862-10. Epub 2010 Jun 11.

6.

Engineering a cyanobacterium as the catalyst for the photosynthetic conversion of CO2 to 1,2-propanediol.

Li H, Liao JC.

Microb Cell Fact. 2013 Jan 22;12:4. doi: 10.1186/1475-2859-12-4.

7.

Improved Free Fatty Acid Production in Cyanobacteria with Synechococcus sp. PCC 7002 as Host.

Ruffing AM.

Front Bioeng Biotechnol. 2014 May 26;2:17. doi: 10.3389/fbioe.2014.00017. eCollection 2014.

8.

Physiological tolerance and stoichiometric potential of cyanobacteria for hydrocarbon fuel production.

Kämäräinen J, Knoop H, Stanford NJ, Guerrero F, Akhtar MK, Aro EM, Steuer R, Jones PR.

J Biotechnol. 2012 Nov 30;162(1):67-74. doi: 10.1016/j.jbiotec.2012.07.193. Epub 2012 Aug 29.

PMID:
22954891
9.

Reconstruction and comparison of the metabolic potential of cyanobacteria Cyanothece sp. ATCC 51142 and Synechocystis sp. PCC 6803.

Saha R, Verseput AT, Berla BM, Mueller TJ, Pakrasi HB, Maranas CD.

PLoS One. 2012;7(10):e48285. doi: 10.1371/journal.pone.0048285. Epub 2012 Oct 31.

10.

The biosynthetic pathway for myxol-2' fucoside (myxoxanthophyll) in the cyanobacterium Synechococcus sp. strain PCC 7002.

Graham JE, Bryant DA.

J Bacteriol. 2009 May;191(10):3292-300. doi: 10.1128/JB.00050-09. Epub 2009 Mar 20. Erratum in: J Bacteriol. 2009 Jul;191(13):4485.

11.

[Carbon and energetic metabolism of Synechococcus sp. PCC7942 under photoautotrophic conditions].

Yan R, Zhang Z, Zhu D, Chu J.

Sheng Wu Gong Cheng Xue Bao. 2009 Sep;25(9):1352-9. Chinese.

PMID:
19938478
12.

A model of the circadian clock in the cyanobacterium Cyanothece sp. ATCC 51142.

Vinh NX, Chetty M, Coppel R, Gaudana S, Wangikar PP.

BMC Bioinformatics. 2013;14 Suppl 2:S14. doi: 10.1186/1471-2105-14-S2-S14. Epub 2013 Jan 21.

13.

An organic acid based counter selection system for cyanobacteria.

Begemann MB, Zess EK, Walters EM, Schmitt EF, Markley AL, Pfleger BF.

PLoS One. 2013 Oct 1;8(10):e76594. doi: 10.1371/journal.pone.0076594. eCollection 2013.

14.

Cyanobacterial conversion of carbon dioxide to 2,3-butanediol.

Oliver JW, Machado IM, Yoneda H, Atsumi S.

Proc Natl Acad Sci U S A. 2013 Jan 22;110(4):1249-54. doi: 10.1073/pnas.1213024110. Epub 2013 Jan 7.

15.

Large-scale bi-level strain design approaches and mixed-integer programming solution techniques.

Kim J, Reed JL, Maravelias CT.

PLoS One. 2011;6(9):e24162. doi: 10.1371/journal.pone.0024162. Epub 2011 Sep 9.

16.

Adaptive bi-level programming for optimal gene knockouts for targeted overproduction under phenotypic constraints.

Ren S, Zeng B, Qian X.

BMC Bioinformatics. 2013;14 Suppl 2:S17. doi: 10.1186/1471-2105-14-S2-S17. Epub 2013 Jan 21.

17.

Linking genome content to biofuel production yields: a meta-analysis of major catabolic pathways among select H2 and ethanol-producing bacteria.

Carere CR, Rydzak T, Verbeke TJ, Cicek N, Levin DB, Sparling R.

BMC Microbiol. 2012 Dec 18;12:295. doi: 10.1186/1471-2180-12-295.

18.

Metabolic and transcriptomic phenotyping of inorganic carbon acclimation in the Cyanobacterium Synechococcus elongatus PCC 7942.

Schwarz D, Nodop A, Hüge J, Purfürst S, Forchhammer K, Michel KP, Bauwe H, Kopka J, Hagemann M.

Plant Physiol. 2011 Apr;155(4):1640-55. doi: 10.1104/pp.110.170225. Epub 2011 Jan 31.

19.

Flux balance analysis of cyanobacterial metabolism: the metabolic network of Synechocystis sp. PCC 6803.

Knoop H, Gründel M, Zilliges Y, Lehmann R, Hoffmann S, Lockau W, Steuer R.

PLoS Comput Biol. 2013;9(6):e1003081. doi: 10.1371/journal.pcbi.1003081. Epub 2013 Jun 27.

20.

Exploring the photosynthetic production capacity of sucrose by cyanobacteria.

Du W, Liang F, Duan Y, Tan X, Lu X.

Metab Eng. 2013 Sep;19:17-25. doi: 10.1016/j.ymben.2013.05.001. Epub 2013 May 28.

PMID:
23721859
Format
Items per page
Sort by

Send to:

Choose Destination

Supplemental Content

Write to the Help Desk