Display Settings:

Format
Items per page
Sort by

Send to:

Choose Destination

Results: 1 to 20 of 110

1.

In-situ growth of micro-cubic Prussian blue-TiO2 composite film as a highly sensitive H2O2 sensor by aerosol co-deposition approach.

Chu Z, Shi L, Liu Y, Jin W, Xu N.

Biosens Bioelectron. 2013 Sep 15;47:329-34. doi: 10.1016/j.bios.2013.03.023. Epub 2013 Mar 28.

PMID:
23603129
[PubMed - indexed for MEDLINE]
2.

Structure effects of self-assembled Prussian blue confined in highly organized mesoporous TiO2 on the electrocatalytic properties towards H2O2 detection.

Gaitán M, Gonçales VR, Soler-Illia GJ, Baraldo LM, de Torresi SI.

Biosens Bioelectron. 2010 Oct 15;26(2):890-3. doi: 10.1016/j.bios.2010.07.026. Epub 2010 Jul 17.

PMID:
20692145
[PubMed - indexed for MEDLINE]
3.

An amperometric glucose biosensor based on titania sol-gel/Prussian Blue composite film.

Liang R, Jiang J, Qiu J.

Anal Sci. 2008;24(11):1425-30.

PMID:
18997370
[PubMed - indexed for MEDLINE]
Free Article
4.

Highly sensitive molecularly imprinted electrochemical sensor based on the double amplification by an inorganic Prussian blue catalytic polymer and the enzymatic effect of glucose oxidase.

Li J, Li Y, Zhang Y, Wei G.

Anal Chem. 2012 Feb 21;84(4):1888-93. doi: 10.1021/ac2026817. Epub 2012 Jan 30.

PMID:
22242638
[PubMed - indexed for MEDLINE]
5.

Amperometric determination of H2O2 at nano-TiO2/DNA/thionin nanocomposite modified electrode.

Lo PH, Kumar SA, Chen SM.

Colloids Surf B Biointerfaces. 2008 Oct 15;66(2):266-73. doi: 10.1016/j.colsurfb.2008.07.003. Epub 2008 Jul 12.

PMID:
18715769
[PubMed - indexed for MEDLINE]
6.

In situ Fenton reagent generated from TiO2/Cu2O composite film: a new way to utilize TiO2 under visible light irradiation.

Zhang YG, Ma LL, Li JL, Yu Y.

Environ Sci Technol. 2007 Sep 1;41(17):6264-9.

PMID:
17937313
[PubMed - indexed for MEDLINE]
7.

In situ controllable growth of Prussian blue nanocubes on reduced graphene oxide: facile synthesis and their application as enhanced nanoelectrocatalyst for H2O2 reduction.

Cao L, Liu Y, Zhang B, Lu L.

ACS Appl Mater Interfaces. 2010 Aug;2(8):2339-46. doi: 10.1021/am100372m.

PMID:
20735106
[PubMed - indexed for MEDLINE]
8.

Prussian blue @ platinum nanoparticles/graphite felt nanocomposite electrodes: application as hydrogen peroxide sensor.

Han L, Tricard S, Fang J, Zhao J, Shen W.

Biosens Bioelectron. 2013 May 15;43:120-4. doi: 10.1016/j.bios.2012.12.003. Epub 2012 Dec 11.

PMID:
23291615
[PubMed - indexed for MEDLINE]
9.

Direct electrochemistry and electrocatalysis of reduced glutathione on CNFs-PDDA/PB nanocomposite film modified ITO electrode for biosensors.

Muthirulan P, Velmurugan R.

Colloids Surf B Biointerfaces. 2011 Apr 1;83(2):347-54. doi: 10.1016/j.colsurfb.2010.12.006. Epub 2010 Dec 9.

PMID:
21215598
[PubMed - indexed for MEDLINE]
10.

Synthesis, characterization, and immobilization of Prussian blue-modified Au nanoparticles: application to electrocatalytic reduction of H2O2.

Qiu JD, Peng HZ, Liang RP, Li J, Xia XH.

Langmuir. 2007 Feb 13;23(4):2133-7.

PMID:
17279705
[PubMed - indexed for MEDLINE]
11.

Layer-by-layer assembled multilayer of graphene/Prussian blue toward simultaneous electrochemical and SPR detection of H2O2.

Mao Y, Bao Y, Wang W, Li Z, Li F, Niu L.

Talanta. 2011 Sep 30;85(4):2106-12. doi: 10.1016/j.talanta.2011.07.056. Epub 2011 Jul 21.

PMID:
21872065
[PubMed - indexed for MEDLINE]
12.
13.

Multilayer assembly of Prussian blue nanoclusters and enzyme-immobilized poly(toluidine blue) films and its application in glucose biosensor construction.

Zhang D, Zhang K, Yao YL, Xia XH, Chen HY.

Langmuir. 2004 Aug 17;20(17):7303-7.

PMID:
15301519
[PubMed - indexed for MEDLINE]
14.

Characterization and electrocatalytic properties of Prussian blue electrochemically deposited on nano-Au/PAMAM dendrimer-modified gold electrode.

Li NB, Park JH, Park K, Kwon SJ, Shin H, Kwak J.

Biosens Bioelectron. 2008 May 15;23(10):1519-26. doi: 10.1016/j.bios.2008.01.009. Epub 2008 Jan 17.

PMID:
18289843
[PubMed - indexed for MEDLINE]
15.

Synthesis, characterization and immobilization of Prussian blue nanoparticles. A potential tool for biosensing devices.

Fiorito PA, Gonçales VR, Ponzio EA, de Torresi SI.

Chem Commun (Camb). 2005 Jan 21;(3):366-8. Epub 2004 Nov 29.

PMID:
15645039
[PubMed - indexed for MEDLINE]
16.

Pt based enzyme electrode probes assembled with Prussian Blue and conducting polymer nanostructures.

Curulli A, Valentini F, Orlanduci S, Terranova ML, Palleschi G.

Biosens Bioelectron. 2004 Dec 15;20(6):1223-32.

PMID:
15556371
[PubMed - indexed for MEDLINE]
17.

Development of an E-H2O2/TiO2 photoelectrocatalytic oxidation system for water and wastewater treatment.

Li XZ, Liu HS.

Environ Sci Technol. 2005 Jun 15;39(12):4614-20.

PMID:
16047800
[PubMed - indexed for MEDLINE]
18.

Photolithographic fabrication of micro-patterned, nanoscale Prussian Blue (PB) arrays for electrocatalytic analysis of ascorbic acid.

Moon S, Zhang N, Cheng Q.

J Nanosci Nanotechnol. 2009 Apr;9(4):2330-6.

PMID:
19437972
[PubMed - indexed for MEDLINE]
19.

Controllable growth of Prussian blue nanostructures on carboxylic group-functionalized carbon nanofibers and its application for glucose biosensing.

Wang L, Ye Y, Zhu H, Song Y, He S, Xu F, Hou H.

Nanotechnology. 2012 Nov 16;23(45):455502. doi: 10.1088/0957-4484/23/45/455502. Epub 2012 Oct 22.

PMID:
23090569
[PubMed - indexed for MEDLINE]
20.

Amperometric biosensor for glutamate using prussian blue-based "artificial peroxidase" as a transducer for hydrogen peroxide.

Karyakin AA, Karyakina EE, Gorton L.

Anal Chem. 2000 Apr 1;72(7):1720-3.

PMID:
10763276
[PubMed - indexed for MEDLINE]

Display Settings:

Format
Items per page
Sort by

Send to:

Choose Destination

Supplemental Content

Write to the Help Desk