Format
Items per page
Sort by

Send to:

Choose Destination

Results: 1 to 20 of 110

Similar articles for PubMed (Select 23602096)

1.

Development and disintegration of tapetum-specific lipid-accumulating organelles, elaioplasts and tapetosomes, in Arabidopsis thaliana and Brassica napus.

Suzuki T, Tsunekawa S, Koizuka C, Yamamoto K, Imamura J, Nakamura K, Ishiguro S.

Plant Sci. 2013 Jun;207:25-36. doi: 10.1016/j.plantsci.2013.02.008. Epub 2013 Mar 1.

PMID:
23602096
2.

Lack of phosphoserine phosphatase activity alters pollen and tapetum development in Arabidopsis thaliana.

Flores-Tornero M, Anoman AD, Rosa-Téllez S, Ros R.

Plant Sci. 2015 Jun;235:81-8. doi: 10.1016/j.plantsci.2015.03.001. Epub 2015 Mar 6.

PMID:
25900568
3.

ABCG26-mediated polyketide trafficking and hydroxycinnamoyl spermidines contribute to pollen wall exine formation in Arabidopsis.

Quilichini TD, Samuels AL, Douglas CJ.

Plant Cell. 2014 Nov;26(11):4483-98. doi: 10.1105/tpc.114.130484. Epub 2014 Nov 21.

PMID:
25415974
4.

Designer amphiphilic proteins as building blocks for the intracellular formation of organelle-like compartments.

Huber MC, Schreiber A, von Olshausen P, Varga BR, Kretz O, Joch B, Barnert S, Schubert R, Eimer S, Kele P, Schiller SM.

Nat Mater. 2015 Jan;14(1):125-32. doi: 10.1038/nmat4118. Epub 2014 Nov 2.

PMID:
25362355
5.

DYT1 directly regulates the expression of TDF1 for tapetum development and pollen wall formation in Arabidopsis.

Gu JN, Zhu J, Yu Y, Teng XD, Lou Y, Xu XF, Liu JL, Yang ZN.

Plant J. 2014 Dec;80(6):1005-13. doi: 10.1111/tpj.12694. Epub 2014 Nov 6.

PMID:
25284309
6.

New views of tapetum ultrastructure and pollen exine development in Arabidopsis thaliana.

Quilichini TD, Douglas CJ, Samuels AL.

Ann Bot. 2014 Oct;114(6):1189-201. doi: 10.1093/aob/mcu042. Epub 2014 Apr 9.

PMID:
24723448
7.

The role of Arabidopsis ABCG9 and ABCG31 ATP binding cassette transporters in pollen fitness and the deposition of steryl glycosides on the pollen coat.

Choi H, Ohyama K, Kim YY, Jin JY, Lee SB, Yamaoka Y, Muranaka T, Suh MC, Fujioka S, Lee Y.

Plant Cell. 2014 Jan;26(1):310-24. doi: 10.1105/tpc.113.118935. Epub 2014 Jan 28.

8.

Secretory activity is rapidly induced in stigmatic papillae by compatible pollen, but inhibited for self-incompatible pollen in the Brassicaceae.

Safavian D, Goring DR.

PLoS One. 2013 Dec 26;8(12):e84286. doi: 10.1371/journal.pone.0084286. eCollection 2013.

9.
10.

Abundant type III lipid transfer proteins in Arabidopsis tapetum are secreted to the locule and become a constituent of the pollen exine.

Huang MD, Chen TL, Huang AH.

Plant Physiol. 2013 Nov;163(3):1218-29. doi: 10.1104/pp.113.225706. Epub 2013 Oct 4.

11.

Cell type-specific transcriptome of Brassicaceae stigmatic papilla cells from a combination of laser microdissection and RNA sequencing.

Osaka M, Matsuda T, Sakazono S, Masuko-Suzuki H, Maeda S, Sewaki M, Sone M, Takahashi H, Nakazono M, Iwano M, Takayama S, Shimizu KK, Yano K, Lim YP, Suzuki G, Suwabe K, Watanabe M.

Plant Cell Physiol. 2013 Nov;54(11):1894-906. doi: 10.1093/pcp/pct133. Epub 2013 Sep 20.

12.

Tandem oleosin genes in a cluster acquired in Brassicaceae created tapetosomes and conferred additive benefit of pollen vigor.

Huang CY, Chen PY, Huang MD, Tsou CH, Jane WN, Huang AH.

Proc Natl Acad Sci U S A. 2013 Aug 27;110(35):14480-5. doi: 10.1073/pnas.1305299110. Epub 2013 Aug 12.

13.

Characterization of polarity development through 2- and 3-D imaging during the initial phase of microspore embryogenesis in Brassica napus L.

Dubas E, Custers J, Kieft H, Wędzony M, van Lammeren AA.

Protoplasma. 2014 Jan;251(1):103-13. doi: 10.1007/s00709-013-0530-y. Epub 2013 Aug 10.

14.

Expression of antimicrobial peptides thanatin(S) in transgenic Arabidopsis enhanced resistance to phytopathogenic fungi and bacteria.

Wu T, Tang D, Chen W, Huang H, Wang R, Chen Y.

Gene. 2013 Sep 15;527(1):235-42. doi: 10.1016/j.gene.2013.06.037. Epub 2013 Jun 29.

PMID:
23820081
15.

Cajal bodies are developmentally regulated during pollen development and pollen tube growth in Arabidopsis thaliana.

Scarpin R, Sigaut L, Pietrasanta L, McCormick S, Zheng B, Muschietti J.

Mol Plant. 2013 Jul;6(4):1355-7. doi: 10.1093/mp/sst077. Epub 2013 May 22. No abstract available.

16.

The transcription factor AtDOF4.2 regulates shoot branching and seed coat formation in Arabidopsis.

Zou HF, Zhang YQ, Wei W, Chen HW, Song QX, Liu YF, Zhao MY, Wang F, Zhang BC, Lin Q, Zhang WK, Ma B, Zhou YH, Zhang JS, Chen SY.

Biochem J. 2013 Jan 15;449(2):373-88. doi: 10.1042/BJ20110060.

PMID:
23095045
17.

Essential role of VIPP1 in chloroplast envelope maintenance in Arabidopsis.

Zhang L, Kato Y, Otters S, Vothknecht UC, Sakamoto W.

Plant Cell. 2012 Sep;24(9):3695-707. doi: 10.1105/tpc.112.103606. Epub 2012 Sep 21.

18.

Brassica napus PHR1 gene encoding a MYB-like protein functions in response to phosphate starvation.

Ren F, Guo QQ, Chang LL, Chen L, Zhao CZ, Zhong H, Li XB.

PLoS One. 2012;7(8):e44005. doi: 10.1371/journal.pone.0044005. Epub 2012 Aug 29.

19.

An oleosin-fusion protein driven by the CaMV35S promoter is accumulated in Arabidopsis (Brassicaceae) seeds and correctly targeted to oil bodies.

Li W, Li LG, Sun XF, Tang KX.

Genet Mol Res. 2012 Aug 13;11(3):2138-46. doi: 10.4238/2012.August.13.1.

20.

Transparent testa16 plays multiple roles in plant development and is involved in lipid synthesis and embryo development in canola.

Deng W, Chen G, Peng F, Truksa M, Snyder CL, Weselake RJ.

Plant Physiol. 2012 Oct;160(2):978-89. doi: 10.1104/pp.112.198713. Epub 2012 Jul 30. Erratum in: Plant Physiol. 2013 Mar;161(3):1584.

Format
Items per page
Sort by

Send to:

Choose Destination

Supplemental Content

Write to the Help Desk