Format
Items per page
Sort by

Send to:

Choose Destination

Links from PubMed

Items: 1 to 20 of 135

1.

Cyclodextrin-derived pH-responsive nanoparticles for delivery of paclitaxel.

He H, Chen S, Zhou J, Dou Y, Song L, Che L, Zhou X, Chen X, Jia Y, Zhang J, Li S, Li X.

Biomaterials. 2013 Jul;34(21):5344-58. doi: 10.1016/j.biomaterials.2013.03.068. Epub 2013 Apr 13.

PMID:
23591391
2.

Reversion of multidrug resistance by a pH-responsive cyclodextrin-derived nanomedicine in drug resistant cancer cells.

Shi Q, Zhang L, Liu M, Zhang X, Zhang X, Xu X, Chen S, Li X, Zhang J.

Biomaterials. 2015 Oct;67:169-82. doi: 10.1016/j.biomaterials.2015.07.023. Epub 2015 Jul 14.

PMID:
26218743
3.

Engineering of Biocompatible pH-Responsive Nanovehicles from Acetalated Cyclodextrins as Effective Delivery Systems for Tumor Therapy.

Zhang D, Wei Y, Chen K, Gong H, Han S, Guo J, Li X, Zhang J.

J Biomed Nanotechnol. 2015 Jun;11(6):923-41.

PMID:
26353583
4.

Biofunctionalized polymer-lipid supported mesoporous silica nanoparticles for release of chemotherapeutics in multidrug resistant cancer cells.

Zhang X, Li F, Guo S, Chen X, Wang X, Li J, Gan Y.

Biomaterials. 2014 Apr;35(11):3650-65. doi: 10.1016/j.biomaterials.2014.01.013. Epub 2014 Jan 24.

PMID:
24462359
5.

IF7-Conjugated Nanoparticles Target Annexin 1 of Tumor Vasculature against P-gp Mediated Multidrug Resistance.

Yu DH, Liu YR, Luan X, Liu HJ, Gao YG, Wu H, Fang C, Chen HZ.

Bioconjug Chem. 2015 Aug 19;26(8):1702-12. doi: 10.1021/acs.bioconjchem.5b00283. Epub 2015 Jun 26.

PMID:
26076081
6.

Tumor-targeting and pH-sensitive lipoprotein-mimic nanocarrier for targeted intracellular delivery of paclitaxel.

Chen C, Hu H, Qiao M, Zhao X, Wang Y, Chen K, Guo X, Chen D.

Int J Pharm. 2015 Mar 1;480(1-2):116-27. doi: 10.1016/j.ijpharm.2015.01.036. Epub 2015 Jan 20.

PMID:
25615984
7.

Peptide-conjugated biodegradable nanoparticles as a carrier to target paclitaxel to tumor neovasculature.

Yu DH, Lu Q, Xie J, Fang C, Chen HZ.

Biomaterials. 2010 Mar;31(8):2278-92. doi: 10.1016/j.biomaterials.2009.11.047. Epub 2010 Jan 6.

PMID:
20053444
9.

Poly(ethylene oxide)-block-polyphosphoester-graft-paclitaxel conjugates with acid-labile linkages as a pH-sensitive and functional nanoscopic platform for paclitaxel delivery.

Zou J, Zhang F, Zhang S, Pollack SF, Elsabahy M, Fan J, Wooley KL.

Adv Healthc Mater. 2014 Mar;3(3):441-8. doi: 10.1002/adhm.201300235. Epub 2013 Aug 30.

10.

Self-aggregated pegylated poly (trimethylene carbonate) nanoparticles decorated with c(RGDyK) peptide for targeted paclitaxel delivery to integrin-rich tumors.

Jiang X, Sha X, Xin H, Chen L, Gao X, Wang X, Law K, Gu J, Chen Y, Jiang Y, Ren X, Ren Q, Fang X.

Biomaterials. 2011 Dec;32(35):9457-69. doi: 10.1016/j.biomaterials.2011.08.055. Epub 2011 Sep 10.

PMID:
21911250
11.

Enhanced anti-tumor efficacy by co-delivery of doxorubicin and paclitaxel with amphiphilic methoxy PEG-PLGA copolymer nanoparticles.

Wang H, Zhao Y, Wu Y, Hu YL, Nan K, Nie G, Chen H.

Biomaterials. 2011 Nov;32(32):8281-90. doi: 10.1016/j.biomaterials.2011.07.032. Epub 2011 Jul 31.

PMID:
21807411
12.

Paclitaxel nanocrystals for overcoming multidrug resistance in cancer.

Liu Y, Huang L, Liu F.

Mol Pharm. 2010 Jun 7;7(3):863-9. doi: 10.1021/mp100012s.

13.

Codelivery of mTERT siRNA and paclitaxel by chitosan-based nanoparticles promoted synergistic tumor suppression.

Wei W, Lv PP, Chen XM, Yue ZG, Fu Q, Liu SY, Yue H, Ma GH.

Biomaterials. 2013 May;34(15):3912-23. doi: 10.1016/j.biomaterials.2013.02.030. Epub 2013 Feb 27.

PMID:
23453062
14.

Therapeutic efficacy and safety of paclitaxel/lonidamine loaded EGFR-targeted nanoparticles for the treatment of multi-drug resistant cancer.

Milane L, Duan Z, Amiji M.

PLoS One. 2011;6(9):e24075. doi: 10.1371/journal.pone.0024075. Epub 2011 Sep 8.

15.

pH-responsive high-density lipoprotein-like nanoparticles to release paclitaxel at acidic pH in cancer chemotherapy.

Shin JY, Yang Y, Heo P, Lee JC, Kong B, Cho JY, Yoon K, Shin CS, Seo JH, Kim SG, Kweon DH.

Int J Nanomedicine. 2012;7:2805-16. doi: 10.2147/IJN.S29817. Epub 2012 Jun 6.

16.

Paclitaxel-loaded PEGylated PLGA-based nanoparticles: in vitro and in vivo evaluation.

Danhier F, Lecouturier N, Vroman B, Jérôme C, Marchand-Brynaert J, Feron O, Préat V.

J Control Release. 2009 Jan 5;133(1):11-7. doi: 10.1016/j.jconrel.2008.09.086. Epub 2008 Oct 9.

PMID:
18950666
17.

A folate receptor-targeting nanoparticle minimizes drug resistance in a human cancer model.

Wang X, Li J, Wang Y, Koenig L, Gjyrezi A, Giannakakou P, Shin EH, Tighiouart M, Chen ZG, Nie S, Shin DM.

ACS Nano. 2011 Aug 23;5(8):6184-94. doi: 10.1021/nn200739q. Epub 2011 Jul 11.

18.

Controlled preparation and antitumor efficacy of vitamin E TPGS-functionalized PLGA nanoparticles for delivery of paclitaxel.

Wang G, Yu B, Wu Y, Huang B, Yuan Y, Liu CS.

Int J Pharm. 2013 Mar 25;446(1-2):24-33. doi: 10.1016/j.ijpharm.2013.02.004. Epub 2013 Feb 10.

PMID:
23402977
19.

Biodegradable nanoparticles based on linoleic acid and poly(beta-malic acid) double grafted chitosan derivatives as carriers of anticancer drugs.

Zhao Z, He M, Yin L, Bao J, Shi L, Wang B, Tang C, Yin C.

Biomacromolecules. 2009 Mar 9;10(3):565-72. doi: 10.1021/bm801225m.

PMID:
19175304
20.

A pH-responsive cyclodextrin-based hybrid nanosystem as a nonviral vector for gene delivery.

Chen H, Liu X, Dou Y, He B, Liu L, Wei Z, Li J, Wang C, Mao C, Zhang J, Wang G.

Biomaterials. 2013 May;34(16):4159-72. doi: 10.1016/j.biomaterials.2013.02.035. Epub 2013 Mar 5.

PMID:
23480956
Format
Items per page
Sort by

Send to:

Choose Destination

Supplemental Content

Write to the Help Desk