Format
Items per page
Sort by

Send to:

Choose Destination

Results: 1 to 20 of 121

Similar articles for PubMed (Select 23582016)

1.

Genetic and structural characterization of PvSERA4: potential implication as therapeutic target for Plasmodium vivax malaria.

Rahul CN, Shiva Krishna K, Pawar AP, Bai M, Kumar V, Phadke S, Rajesh V.

J Biomol Struct Dyn. 2014 Apr;32(4):580-90. doi: 10.1080/07391102.2013.782824. Epub 2013 Apr 13.

PMID:
23582016
2.

Plasmodium vivax: C-terminal diversity in the blood stage SERA genes from Indian field isolates.

Rahul CN, Shiva Krishna K, Meera Bai N, Kumar V, Phadke S, Rajesh V.

Exp Parasitol. 2013 May;134(1):82-91. doi: 10.1016/j.exppara.2013.02.004. Epub 2013 Feb 24.

PMID:
23485360
3.

Evaluation of cysteine proteases of Plasmodium vivax as antimalarial drug targets: sequence analysis and sensitivity to cysteine protease inhibitors.

Na BK, Kim TS, Rosenthal PJ, Lee JK, Kong Y.

Parasitol Res. 2004 Oct;94(4):312-7. Epub 2004 Sep 15.

PMID:
15372231
4.

In Silico screening on the three-dimensional model of the Plasmodium vivax SUB1 protease leads to the validation of a novel anti-parasite compound.

Bouillon A, Giganti D, Benedet C, Gorgette O, PĂȘtres S, Crublet E, Girard-Blanc C, Witkowski B, MĂ©nard D, Nilges M, Mercereau-Puijalon O, Stoven V, Barale JC.

J Biol Chem. 2013 Jun 21;288(25):18561-73. doi: 10.1074/jbc.M113.456764. Epub 2013 May 7.

5.

A knowledge-based approach for identification of drugs against vivapain-2 protein of Plasmodium vivax through pharmacophore-based virtual screening with comparative modelling.

Yadav MK, Singh A, Swati D.

Appl Biochem Biotechnol. 2014 Aug;173(8):2174-88. doi: 10.1007/s12010-014-1023-y. Epub 2014 Jun 27.

PMID:
24970047
6.

Enzymic, phylogenetic, and structural characterization of the unusual papain-like protease domain of Plasmodium falciparum SERA5.

Hodder AN, Drew DR, Epa VC, Delorenzi M, Bourgon R, Miller SK, Moritz RL, Frecklington DF, Simpson RJ, Speed TP, Pike RN, Crabb BS.

J Biol Chem. 2003 Nov 28;278(48):48169-77. Epub 2003 Sep 17.

7.

Plasmodium vivax merozoite surface protein PvMSP-3 beta is radically polymorphic through mutation and large insertions and deletions.

Rayner JC, Huber CS, Feldman D, Ingravallo P, Galinski MR, Barnwell JW.

Infect Genet Evol. 2004 Dec;4(4):309-19.

PMID:
15374528
8.

Evolutionary relationships of conserved cysteine-rich motifs in adhesive molecules of malaria parasites.

Michon P, Stevens JR, Kaneko O, Adams JH.

Mol Biol Evol. 2002 Jul;19(7):1128-42.

9.

Sequence homology and structural analysis of plasmepsin 4 isolated from Indian Plasmodium vivax isolates.

Rawat M, Vijay S, Gupta Y, Dixit R, Tiwari PK, Sharma A.

Infect Genet Evol. 2011 Jul;11(5):924-33. doi: 10.1016/j.meegid.2011.02.024. Epub 2011 Mar 5.

PMID:
21382523
10.

Identification and biochemical characterization of vivapains, cysteine proteases of the malaria parasite Plasmodium vivax.

Na BK, Shenai BR, Sijwali PS, Choe Y, Pandey KC, Singh A, Craik CS, Rosenthal PJ.

Biochem J. 2004 Mar 1;378(Pt 2):529-38.

11.
12.

Evaluation of the genetic diversity of domain II of Plasmodium vivax Apical Membrane Antigen 1 (PvAMA-1) and the ensuing strain-specific immune responses in patients from Sri Lanka.

Dias S, Somarathna M, Manamperi A, Escalante AA, Gunasekera AM, Udagama PV.

Vaccine. 2011 Oct 6;29(43):7491-504. doi: 10.1016/j.vaccine.2011.07.029. Epub 2011 Jul 23.

PMID:
21784116
13.

Genetic variation of aldolase from Korean isolates of Plasmodium vivax and its usefulness in serodiagnosis.

Kim JY, Kim HH, Shin HL, Sohn Y, Kim H, Lee SW, Lee WJ, Lee HW.

Malar J. 2012 May 8;11:159. doi: 10.1186/1475-2875-11-159.

14.

High immunogenecity and erythrocyte-binding activity in the tryptophan-rich domain (TRD) of the 74-kDa Plasmodium vivax alanine-tryptophan-rich antigen (PvATRAg74).

Alam MT, Bora H, Singh N, Sharma YD.

Vaccine. 2008 Jul 23;26(31):3787-94. doi: 10.1016/j.vaccine.2008.05.059. Epub 2008 Jun 10.

PMID:
18579264
15.

Identification, expression, localization and serological characterization of a tryptophan-rich antigen from the human malaria parasite Plasmodium vivax.

Jalah R, Sarin R, Sud N, Alam MT, Parikh N, Das TK, Sharma YD.

Mol Biochem Parasitol. 2005 Aug;142(2):158-69. Epub 2005 Apr 26.

PMID:
15869815
16.

Aspartic proteases of Plasmodium vivax are highly conserved in wild isolates.

Na BK, Lee EG, Lee HW, Cho SH, Bae YA, Kong Y, Lee JK, Kim TS.

Korean J Parasitol. 2004 Jun;42(2):61-6.

17.

Study of protein complexes via homology modeling, applied to cysteine proteases and their protein inhibitors.

Tastan Bishop O, Kroon M.

J Mol Model. 2011 Dec;17(12):3163-72. doi: 10.1007/s00894-011-0990-y. Epub 2011 Mar 2.

PMID:
21365221
18.

Natural variation within the principal adhesion domain of the Plasmodium vivax duffy binding protein.

Tsuboi T, Kappe SH, al-Yaman F, Prickett MD, Alpers M, Adams JH.

Infect Immun. 1994 Dec;62(12):5581-6.

19.

Genetic variation among Plasmodium vivax isolates adapted to non-human primates and the implication for vaccine development.

Ntumngia FB, McHenry AM, Barnwell JW, Cole-Tobian J, King CL, Adams JH.

Am J Trop Med Hyg. 2009 Feb;80(2):218-27.

20.

Genetic characteristics of polymorphic antigenic markers among Korean isolates of Plasmodium vivax.

Hwang SY, Kim SH, Kho WG.

Korean J Parasitol. 2009 Oct;47 Suppl:S51-8. doi: 10.3347/kjp.2009.47.S.S51. Review.

Format
Items per page
Sort by

Send to:

Choose Destination

Supplemental Content

Write to the Help Desk