Format
Items per page
Sort by

Send to:

Choose Destination

Links from PubMed

Items: 1 to 20 of 300

1.

Comparing bacterial membrane interactions and antimicrobial activity of porcine lactoferricin-derived peptides.

Han FF, Gao YH, Luan C, Xie YG, Liu YF, Wang YZ.

J Dairy Sci. 2013 Jun;96(6):3471-87. doi: 10.3168/jds.2012-6104. Epub 2013 Apr 5.

PMID:
23567049
2.

Effects of Pro --> peptoid residue substitution on cell selectivity and mechanism of antibacterial action of tritrpticin-amide antimicrobial peptide.

Zhu WL, Lan H, Park Y, Yang ST, Kim JI, Park IS, You HJ, Lee JS, Park YS, Kim Y, Hahm KS, Shin SY.

Biochemistry. 2006 Oct 31;45(43):13007-17.

PMID:
17059217
3.

Interaction of a novel antimicrobial peptide isolated from the venom of solitary bee Colletes daviesanus with phospholipid vesicles and Escherichia coli cells.

Čujová S, Bednárová L, Slaninová J, Straka J, Čeřovský V.

J Pept Sci. 2014 Nov;20(11):885-95. doi: 10.1002/psc.2681. Epub 2014 Aug 14.

PMID:
25123582
4.

Studies on lactoferricin-derived Escherichia coli membrane-active peptides reveal differences in the mechanism of N-acylated versus nonacylated peptides.

Zweytick D, Deutsch G, Andrä J, Blondelle SE, Vollmer E, Jerala R, Lohner K.

J Biol Chem. 2011 Jun 17;286(24):21266-76. doi: 10.1074/jbc.M110.195412. Epub 2011 Apr 22.

5.

Bactericidal effect of bovine lactoferrin, LFcin, LFampin and LFchimera on antibiotic-resistant Staphylococcus aureus and Escherichia coli.

Flores-Villaseñor H, Canizalez-Román A, Reyes-Lopez M, Nazmi K, de la Garza M, Zazueta-Beltrán J, León-Sicairos N, Bolscher JG.

Biometals. 2010 Jun;23(3):569-78. doi: 10.1007/s10534-010-9306-4. Epub 2010 Mar 2.

PMID:
20195887
6.

Potassium efflux induced by a new lactoferrin-derived peptide mimicking the effect of native human lactoferrin on the bacterial cytoplasmic membrane.

Viejo-Díaz M, Andrés MT, Pérez-Gil J, Sánchez M, Fierro JF.

Biochemistry (Mosc). 2003 Feb;68(2):217-27.

PMID:
12693969
7.

Comparative antimicrobial activity and mechanism of action of bovine lactoferricin-derived synthetic peptides.

Liu Y, Han F, Xie Y, Wang Y.

Biometals. 2011 Dec;24(6):1069-78. doi: 10.1007/s10534-011-9465-y. Epub 2011 May 24.

PMID:
21607695
8.
9.

Antimicrobial activities and membrane-active mechanism of CPF-C1 against multidrug-resistant bacteria, a novel antimicrobial peptide derived from skin secretions of the tetraploid frog Xenopus clivii.

Xie J, Gou Y, Zhao Q, Wang K, Yang X, Yan J, Zhang W, Zhang B, Ma C, Wang R.

J Pept Sci. 2014 Nov;20(11):876-84. doi: 10.1002/psc.2679. Epub 2014 Aug 6.

PMID:
25098547
10.

Interactions of an antimicrobial peptide, magainin 2, with outer and inner membranes of Gram-negative bacteria.

Matsuzaki K, Sugishita K, Harada M, Fujii N, Miyajima K.

Biochim Biophys Acta. 1997 Jul 5;1327(1):119-30.

PMID:
9247173
11.
12.

The characteristic region of arenicin-1 involved with a bacterial membrane targeting mechanism.

Cho J, Lee DG.

Biochem Biophys Res Commun. 2011 Feb 18;405(3):422-7. doi: 10.1016/j.bbrc.2011.01.046. Epub 2011 Jan 15.

PMID:
21241661
14.

Antimicrobial activity, bactericidal mechanism and LPS-neutralizing activity of the cell-penetrating peptide pVEC and its analogs.

Nan YH, Park IS, Hahm KS, Shin SY.

J Pept Sci. 2011 Dec;17(12):812-7. doi: 10.1002/psc.1408. Epub 2011 Sep 29.

PMID:
21956793
15.

Biochemical property and membrane-peptide interactions of de novo antimicrobial peptides designed by helix-forming units.

Ma QQ, Dong N, Shan AS, Lv YF, Li YZ, Chen ZH, Cheng BJ, Li ZY.

Amino Acids. 2012 Dec;43(6):2527-36. doi: 10.1007/s00726-012-1334-7. Epub 2012 Jun 15.

PMID:
22699557
16.

Antimicrobial specificity and mechanism of action of disulfide-removed linear analogs of the plant-derived Cys-rich antimicrobial peptide Ib-AMP1.

Wang P, Bang JK, Kim HJ, Kim JK, Kim Y, Shin SY.

Peptides. 2009 Dec;30(12):2144-9. doi: 10.1016/j.peptides.2009.09.020. Epub 2009 Sep 22.

PMID:
19778562
17.

A novel antimicrobial peptide derived from modified N-terminal domain of bovine lactoferrin: design, synthesis, activity against multidrug-resistant bacteria and Candida.

Mishra B, Leishangthem GD, Gill K, Singh AK, Das S, Singh K, Xess I, Dinda A, Kapil A, Patro IK, Dey S.

Biochim Biophys Acta. 2013 Feb;1828(2):677-86. doi: 10.1016/j.bbamem.2012.09.021. Epub 2012 Sep 29.

18.

Different modes in antibiotic action of tritrpticin analogs, cathelicidin-derived Trp-rich and Pro/Arg-rich peptides.

Yang ST, Shin SY, Hahm KS, Kim JI.

Biochim Biophys Acta. 2006 Oct;1758(10):1580-6. Epub 2006 Jun 7.

19.

Antimicrobial potency and selectivity of simplified symmetric-end peptides.

Dong N, Zhu X, Chou S, Shan A, Li W, Jiang J.

Biomaterials. 2014 Sep;35(27):8028-39. doi: 10.1016/j.biomaterials.2014.06.005. Epub 2014 Jun 19.

PMID:
24952979
Format
Items per page
Sort by

Send to:

Choose Destination

Supplemental Content

Write to the Help Desk