Format
Items per page
Sort by

Send to:

Choose Destination

Results: 1 to 20 of 140

Similar articles for PubMed (Select 23563928)

1.

A mechanistic study into the catalytic effect of Ni(OH)2 on hematite for photoelectrochemical water oxidation.

Wang G, Ling Y, Lu X, Zhai T, Qian F, Tong Y, Li Y.

Nanoscale. 2013 May 21;5(10):4129-33. doi: 10.1039/c3nr00569k.

PMID:
23563928
2.

Atomic layer deposition of a submonolayer catalyst for the enhanced photoelectrochemical performance of water oxidation with hematite.

Riha SC, Klahr BM, Tyo EC, Seifert S, Vajda S, Pellin MJ, Hamann TW, Martinson AB.

ACS Nano. 2013 Mar 26;7(3):2396-405. doi: 10.1021/nn305639z. Epub 2013 Feb 28.

PMID:
23398051
3.

Enhanced photocatalytic water oxidation efficiency with Ni(OH)₂ catalysts deposited on α-Fe₂O₃ via ALD.

Young KM, Hamann TW.

Chem Commun (Camb). 2014 Aug 14;50(63):8727-30. doi: 10.1039/c4cc02598a. Epub 2014 Jun 25.

PMID:
24963754
4.

Efficient and stable photo-oxidation of water by a bismuth vanadate photoanode coupled with an iron oxyhydroxide oxygen evolution catalyst.

Seabold JA, Choi KS.

J Am Chem Soc. 2012 Feb 1;134(4):2186-92. doi: 10.1021/ja209001d. Epub 2012 Jan 20.

PMID:
22263661
5.

Antimony-doped tin oxide nanorods as a transparent conducting electrode for enhancing photoelectrochemical oxidation of water by hematite.

Sun Y, Chemelewski WD, Berglund SP, Li C, He H, Shi G, Mullins CB.

ACS Appl Mater Interfaces. 2014 Apr 23;6(8):5494-9. doi: 10.1021/am405628r. Epub 2014 Apr 3.

PMID:
24665964
6.

Low-temperature activation of hematite nanowires for photoelectrochemical water oxidation.

Ling Y, Wang G, Wang H, Yang Y, Li Y.

ChemSusChem. 2014 Mar;7(3):848-53. doi: 10.1002/cssc.201301013. Epub 2014 Feb 3.

PMID:
24493003
7.

Water oxidation at hematite photoelectrodes: the role of surface states.

Klahr B, Gimenez S, Fabregat-Santiago F, Hamann T, Bisquert J.

J Am Chem Soc. 2012 Mar 7;134(9):4294-302. doi: 10.1021/ja210755h. Epub 2012 Feb 23.

PMID:
22303953
8.

Making oxygen with ruthenium complexes.

Concepcion JJ, Jurss JW, Brennaman MK, Hoertz PG, Patrocinio AO, Murakami Iha NY, Templeton JL, Meyer TJ.

Acc Chem Res. 2009 Dec 21;42(12):1954-65. doi: 10.1021/ar9001526.

PMID:
19817345
9.

Sn-doped hematite nanostructures for photoelectrochemical water splitting.

Ling Y, Wang G, Wheeler DA, Zhang JZ, Li Y.

Nano Lett. 2011 May 11;11(5):2119-25. doi: 10.1021/nl200708y. Epub 2011 Apr 8.

PMID:
21476581
10.

Solar water splitting: progress using hematite (α-Fe(2) O(3) ) photoelectrodes.

Sivula K, Le Formal F, Grätzel M.

ChemSusChem. 2011 Apr 18;4(4):432-49. doi: 10.1002/cssc.201000416. Epub 2011 Mar 17. Review.

PMID:
21416621
11.

Photoelectrochemical and impedance spectroscopic investigation of water oxidation with "Co-Pi"-coated hematite electrodes.

Klahr B, Gimenez S, Fabregat-Santiago F, Bisquert J, Hamann TW.

J Am Chem Soc. 2012 Oct 10;134(40):16693-700. doi: 10.1021/ja306427f. Epub 2012 Sep 27.

PMID:
22950478
12.

Single-crystalline, wormlike hematite photoanodes for efficient solar water splitting.

Kim JY, Magesh G, Youn DH, Jang JW, Kubota J, Domen K, Lee JS.

Sci Rep. 2013;3:2681. doi: 10.1038/srep02681.

13.

Water oxidation on pure and doped hematite (0001) surfaces: prediction of Co and Ni as effective dopants for electrocatalysis.

Liao P, Keith JA, Carter EA.

J Am Chem Soc. 2012 Aug 15;134(32):13296-309. doi: 10.1021/ja301567f. Epub 2012 Aug 1.

PMID:
22788792
14.

Water oxidation catalysis: effects of nickel incorporation on the structural and chemical properties of the α-Fe₂O₃(0001) surface.

Zhao P, Koel BE.

ACS Appl Mater Interfaces. 2014 Dec 24;6(24):22289-96. doi: 10.1021/am5062773. Epub 2014 Dec 9.

PMID:
25423044
15.

Nanostructure-Preserved Hematite Thin Film for Efficient Solar Water Splitting.

Kim JY, Youn DH, Kim JH, Kim HG, Lee JS.

ACS Appl Mater Interfaces. 2015 Jul 1;7(25):14123-9. doi: 10.1021/acsami.5b03409. Epub 2015 Jun 18.

PMID:
26046296
16.

Mesoporous α-Fe2O3 thin films synthesized via the sol-gel process for light-driven water oxidation.

Hamd W, Cobo S, Fize J, Baldinozzi G, Schwartz W, Reymermier M, Pereira A, Fontecave M, Artero V, Laberty-Robert C, Sanchez C.

Phys Chem Chem Phys. 2012 Oct 14;14(38):13224-32. doi: 10.1039/c2cp42535a.

PMID:
22911106
17.

Surface treatment of hematite photoanodes with zinc acetate for water oxidation.

Xi L, Bassi PS, Chiam SY, Mak WF, Tran PD, Barber J, Chye Loo JS, Wong LH.

Nanoscale. 2012 Aug 7;4(15):4430-3. doi: 10.1039/c2nr30862b. Epub 2012 Jun 12.

PMID:
22688799
18.

Gradient FeO(x)(PO4)(y) layer on hematite photoanodes: novel structure for efficient light-driven water oxidation.

Zhang Y, Zhou Z, Chen C, Che Y, Ji H, Ma W, Zhang J, Song D, Zhao J.

ACS Appl Mater Interfaces. 2014 Aug 13;6(15):12844-51. doi: 10.1021/am502821d. Epub 2014 Jul 28.

PMID:
25068504
19.

Marked enhancement in electron-hole separation achieved in the low bias region using electrochemically prepared Mo-doped BiVO4 photoanodes.

Park Y, Kang D, Choi KS.

Phys Chem Chem Phys. 2014 Jan 21;16(3):1238-46. doi: 10.1039/c3cp53649a. Epub 2013 Dec 2.

PMID:
24296682
20.

Hematite photoanodes modified with an Fe(III) water oxidation catalyst.

Dalle Carbonare N, Cristino V, Berardi S, Carli S, Argazzi R, Caramori S, Meda L, Tacca A, Bignozzi CA.

Chemphyschem. 2014 Apr 14;15(6):1164-74. doi: 10.1002/cphc.201301143. Epub 2014 Mar 18.

PMID:
24643917
Format
Items per page
Sort by

Send to:

Choose Destination

Supplemental Content

Write to the Help Desk