Format
Sort by

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 107

1.

Disulfide-bond scanning reveals assembly state and β-strand tilt angle of the PFO β-barrel.

Sato TK, Tweten RK, Johnson AE.

Nat Chem Biol. 2013 Jun;9(6):383-9. doi: 10.1038/nchembio.1228. Epub 2013 Apr 7.

2.

Arresting pore formation of a cholesterol-dependent cytolysin by disulfide trapping synchronizes the insertion of the transmembrane beta-sheet from a prepore intermediate.

Hotze EM, Wilson-Kubalek EM, Rossjohn J, Parker MW, Johnson AE, Tweten RK.

J Biol Chem. 2001 Mar 16;276(11):8261-8. Epub 2000 Dec 1.

3.

Vertical collapse of a cytolysin prepore moves its transmembrane beta-hairpins to the membrane.

Czajkowsky DM, Hotze EM, Shao Z, Tweten RK.

EMBO J. 2004 Aug 18;23(16):3206-15. Epub 2004 Aug 5.

4.

Crucial role of perfringolysin O D1 domain in orchestrating structural transitions leading to membrane-perforating pores: a hydrogen-deuterium exchange study.

Kacprzyk-Stokowiec A, Kulma M, Traczyk G, Kwiatkowska K, Sobota A, Dadlez M.

J Biol Chem. 2014 Oct 10;289(41):28738-52. doi: 10.1074/jbc.M114.577981. Epub 2014 Aug 27.

5.

Conformational changes that effect oligomerization and initiate pore formation are triggered throughout perfringolysin O upon binding to cholesterol.

Heuck AP, Savva CG, Holzenburg A, Johnson AE.

J Biol Chem. 2007 Aug 3;282(31):22629-37. Epub 2007 Jun 5.

6.

Membrane-dependent conformational changes initiate cholesterol-dependent cytolysin oligomerization and intersubunit beta-strand alignment.

Ramachandran R, Tweten RK, Johnson AE.

Nat Struct Mol Biol. 2004 Aug;11(8):697-705. Epub 2004 Jul 4.

PMID:
15235590
7.

Prepore to pore transition of a cholesterol-dependent cytolysin visualized by electron microscopy.

Dang TX, Hotze EM, Rouiller I, Tweten RK, Wilson-Kubalek EM.

J Struct Biol. 2005 Apr;150(1):100-8.

PMID:
15797734
8.

Monomer-monomer interactions drive the prepore to pore conversion of a beta-barrel-forming cholesterol-dependent cytolysin.

Hotze EM, Heuck AP, Czajkowsky DM, Shao Z, Johnson AE, Tweten RK.

J Biol Chem. 2002 Mar 29;277(13):11597-605. Epub 2002 Jan 17.

10.

Perfringolysin O: The Underrated Clostridium perfringens Toxin?

Verherstraeten S, Goossens E, Valgaeren B, Pardon B, Timbermont L, Haesebrouck F, Ducatelle R, Deprez P, Wade KR, Tweten R, Van Immerseel F.

Toxins (Basel). 2015 May 14;7(5):1702-21. doi: 10.3390/toxins7051702. Review.

11.
12.
13.

The mechanism of membrane insertion for a cholesterol-dependent cytolysin: a novel paradigm for pore-forming toxins.

Shatursky O, Heuck AP, Shepard LA, Rossjohn J, Parker MW, Johnson AE, Tweten RK.

Cell. 1999 Oct 29;99(3):293-9.

14.

Structural insights into the membrane-anchoring mechanism of a cholesterol-dependent cytolysin.

Ramachandran R, Heuck AP, Tweten RK, Johnson AE.

Nat Struct Biol. 2002 Nov;9(11):823-7.

PMID:
12368903
15.

Decreasing Transmembrane Segment Length Greatly Decreases Perfringolysin O Pore Size.

Lin Q, Wang T, Li H, London E.

J Membr Biol. 2015 Jun;248(3):517-27. doi: 10.1007/s00232-015-9798-5. Epub 2015 Apr 8.

PMID:
25850715
16.

The cholesterol-dependent cytolysins.

Tweten RK, Parker MW, Johnson AE.

Curr Top Microbiol Immunol. 2001;257:15-33. Review.

PMID:
11417120
17.

Perfringolysin O structure and mechanism of pore formation as a paradigm for cholesterol-dependent cytolysins.

Johnson BB, Heuck AP.

Subcell Biochem. 2014;80:63-81. doi: 10.1007/978-94-017-8881-6_5. Review.

18.

The Cholesterol-dependent Cytolysin Membrane-binding Interface Discriminates Lipid Environments of Cholesterol to Support β-Barrel Pore Insertion.

Farrand AJ, Hotze EM, Sato TK, Wade KR, Wimley WC, Johnson AE, Tweten RK.

J Biol Chem. 2015 Jul 17;290(29):17733-44. doi: 10.1074/jbc.M115.656769. Epub 2015 Jun 1.

19.

Assembly and topography of the prepore complex in cholesterol-dependent cytolysins.

Heuck AP, Tweten RK, Johnson AE.

J Biol Chem. 2003 Aug 15;278(33):31218-25. Epub 2003 May 30.

20.
Items per page

Supplemental Content

Write to the Help Desk