Format
Items per page
Sort by

Send to:

Choose Destination

Results: 1 to 20 of 133

Similar articles for PubMed (Select 23562496)

1.

2-Hydroxychalcone and xanthohumol inhibit invasion of triple negative breast cancer cells.

Kim SY, Lee IS, Moon A.

Chem Biol Interact. 2013 May 25;203(3):565-72. doi: 10.1016/j.cbi.2013.03.012. Epub 2013 Apr 3.

PMID:
23562496
2.

CIP2A is a target of bortezomib in human triple negative breast cancer cells.

Tseng LM, Liu CY, Chang KC, Chu PY, Shiau CW, Chen KF.

Breast Cancer Res. 2012 Apr 26;14(2):R68.

3.

Targeting triple-negative breast cancer cells with the histone deacetylase inhibitor panobinostat.

Tate CR, Rhodes LV, Segar HC, Driver JL, Pounder FN, Burow ME, Collins-Burow BM.

Breast Cancer Res. 2012 May 21;14(3):R79.

4.

Suppression of growth, migration and invasion of highly-metastatic human breast cancer cells by berbamine and its molecular mechanisms of action.

Wang S, Liu Q, Zhang Y, Liu K, Yu P, Liu K, Luan J, Duan H, Lu Z, Wang F, Wu E, Yagasaki K, Zhang G.

Mol Cancer. 2009 Oct 1;8:81. doi: 10.1186/1476-4598-8-81.

5.

Establishment of a bioluminescent MDA-MB-231 cell line for human triple-negative breast cancer research.

Wang K, Xie S, Ren Y, Xia H, Zhang X, He J.

Oncol Rep. 2012 Jun;27(6):1981-9. doi: 10.3892/or.2012.1742. Epub 2012 Mar 22.

PMID:
22446691
6.

A mouse model for triple-negative breast cancer tumor-initiating cells (TNBC-TICs) exhibits similar aggressive phenotype to the human disease.

Kaur P, Nagaraja GM, Zheng H, Gizachew D, Galukande M, Krishnan S, Asea A.

BMC Cancer. 2012 Mar 27;12:120. doi: 10.1186/1471-2407-12-120.

7.

A targeted RNAi screen of the breast cancer genome identifies KIF14 and TLN1 as genes that modulate docetaxel chemosensitivity in triple-negative breast cancer.

Singel SM, Cornelius C, Batten K, Fasciani G, Wright WE, Lum L, Shay JW.

Clin Cancer Res. 2013 Apr 15;19(8):2061-70. doi: 10.1158/1078-0432.CCR-13-0082. Epub 2013 Mar 11.

8.

YM155, a selective survivin suppressant, inhibits tumor spread and prolongs survival in a spontaneous metastatic model of human triple negative breast cancer.

Yamanaka K, Nakata M, Kaneko N, Fushiki H, Kita A, Nakahara T, Koutoku H, Sasamata M.

Int J Oncol. 2011 Sep;39(3):569-75. doi: 10.3892/ijo.2011.1077. Epub 2011 Jun 14.

PMID:
21674125
9.

Agonists and antagonists of GnRH-I and -II reduce metastasis formation by triple-negative human breast cancer cells in vivo.

Schubert A, Hawighorst T, Emons G, Gründker C.

Breast Cancer Res Treat. 2011 Dec;130(3):783-90. doi: 10.1007/s10549-011-1358-9. Epub 2011 Jan 30.

PMID:
21279682
10.

Gonadotropin-releasing hormone type II antagonist induces apoptosis in MCF-7 and triple-negative MDA-MB-231 human breast cancer cells in vitro and in vivo.

Gründker C, Föst C, Fister S, Nolte N, Günthert AR, Emons G.

Breast Cancer Res. 2010;12(4):R49. doi: 10.1186/bcr2606. Epub 2010 Jul 14.

11.

The effects of RKIP gene expression on the biological characteristics of human triple-negative breast cancer cells in vitro.

Hao C, Wei S, Tong Z, Li S, Shi Y, Wang X, Zhu ZH.

Tumour Biol. 2012 Aug;33(4):1159-67. doi: 10.1007/s13277-012-0358-7. Epub 2012 Feb 29.

PMID:
22373584
12.

Efficacy of everolimus, a novel mTOR inhibitor, against basal-like triple-negative breast cancer cells.

Yunokawa M, Koizumi F, Kitamura Y, Katanasaka Y, Okamoto N, Kodaira M, Yonemori K, Shimizu C, Ando M, Masutomi K, Yoshida T, Fujiwara Y, Tamura K.

Cancer Sci. 2012 Sep;103(9):1665-71. doi: 10.1111/j.1349-7006.2012.02359.x. Epub 2012 Aug 1.

PMID:
22703543
13.

Lapatinib-mediated cyclooxygenase-2 expression via epidermal growth factor receptor/HuR interaction enhances the aggressiveness of triple-negative breast cancer cells.

Hsia TC, Tu CY, Chen YJ, Wei YL, Yu MC, Hsu SC, Tsai SL, Chen WS, Yeh MH, Yen CJ, Yu YL, Huang TC, Huang CY, Hung MC, Huang WC.

Mol Pharmacol. 2013 Apr;83(4):857-69. doi: 10.1124/mol.112.082743. Epub 2013 Jan 25.

14.

[Establishment of a bioluminescent MDA-MB-231 cell line for in vivo imaging of human triple-negative breast cancer xenograft].

Wang K, Xie SM, He JJ, Ren Y, Xia HB, Zhang XW.

Nan Fang Yi Ke Da Xue Xue Bao. 2011 Nov;31(11):1812-8. Chinese.

15.

Cisplatin in combination with zoledronic acid: a synergistic effect in triple-negative breast cancer cell lines.

Ibrahim T, Liverani C, Mercatali L, Sacanna E, Zanoni M, Fabbri F, Zoli W, Amadori D.

Int J Oncol. 2013 Apr;42(4):1263-70. doi: 10.3892/ijo.2013.1809. Epub 2013 Feb 6.

PMID:
23403907
16.

Targeting triple-negative breast cancer through the somatostatin receptor with the new cytotoxic somatostatin analogue AN-162 [AEZS-124].

Seitz S, Buchholz S, Schally AV, Jayakumar AR, Weber F, Papadia A, Rick FG, Szalontay L, Treszl A, Köster F, Ortmann O, Hohla F.

Anticancer Drugs. 2013 Feb;24(2):150-7. doi: 10.1097/CAD.0b013e32835a7e29.

PMID:
23080077
17.

BTG2 inhibits the proliferation, invasion, and apoptosis of MDA-MB-231 triple-negative breast cancer cells.

Zhang YJ, Wei L, Liu M, Li J, Zheng YQ, Gao Y, Li XR.

Tumour Biol. 2013 Jun;34(3):1605-13. doi: 10.1007/s13277-013-0691-5. Epub 2013 Feb 19.

PMID:
23420441
18.
19.

Antitumor activity of phenethyl isothiocyanate in HER2-positive breast cancer models.

Gupta P, Srivastava SK.

BMC Med. 2012 Jul 24;10:80. doi: 10.1186/1741-7015-10-80.

20.

The indole-3-carbinol cyclic tetrameric derivative CTet inhibits cell proliferation via overexpression of p21/CDKN1A in both estrogen receptor-positive and triple-negative breast cancer cell lines.

De Santi M, Galluzzi L, Lucarini S, Paoletti MF, Fraternale A, Duranti A, De Marco C, Fanelli M, Zaffaroni N, Brandi G, Magnani M.

Breast Cancer Res. 2011 Mar 24;13(2):R33. doi: 10.1186/bcr2855.

Format
Items per page
Sort by

Send to:

Choose Destination

Supplemental Content

Write to the Help Desk