Format
Sort by

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 98

1.

Gene regulation by CcpA and catabolite repression explored by RNA-Seq in Streptococcus mutans.

Zeng L, Choi SC, Danko CG, Siepel A, Stanhope MJ, Burne RA.

PLoS One. 2013;8(3):e60465. doi: 10.1371/journal.pone.0060465. Epub 2013 Mar 28.

2.

CcpA regulates central metabolism and virulence gene expression in Streptococcus mutans.

Abranches J, Nascimento MM, Zeng L, Browngardt CM, Wen ZT, Rivera MF, Burne RA.

J Bacteriol. 2008 Apr;190(7):2340-9. doi: 10.1128/JB.01237-07. Epub 2008 Jan 25.

3.

CcpA-dependent carbohydrate catabolite repression regulates galactose metabolism in Streptococcus oligofermentans.

Cai J, Tong H, Qi F, Dong X.

J Bacteriol. 2012 Aug;194(15):3824-32. doi: 10.1128/JB.00156-12. Epub 2012 May 18.

4.

Multiple sugar: phosphotransferase system permeases participate in catabolite modification of gene expression in Streptococcus mutans.

Zeng L, Burne RA.

Mol Microbiol. 2008 Oct;70(1):197-208. doi: 10.1111/j.1365-2958.2008.06403.x. Epub 2008 Aug 11.

5.

Catabolite repression mediated by the CcpA protein in Bacillus subtilis: novel modes of regulation revealed by whole-genome analyses.

Moreno MS, Schneider BL, Maile RR, Weyler W, Saier MH Jr.

Mol Microbiol. 2001 Mar;39(5):1366-81.

6.

Functional genomics approach to identifying genes required for biofilm development by Streptococcus mutans.

Wen ZT, Burne RA.

Appl Environ Microbiol. 2002 Mar;68(3):1196-203. Erratum in: Appl Environ Microbiol. 2003 Jan;69(1):722..

7.
8.

Catabolite repression and activation in Bacillus subtilis: dependency on CcpA, HPr, and HprK.

Lorca GL, Chung YJ, Barabote RD, Weyler W, Schilling CH, Saier MH Jr.

J Bacteriol. 2005 Nov;187(22):7826-39.

9.

Regulation of the galactose operon of Streptococcus mutans.

Ajdic D, Ferretti JJ.

Adv Exp Med Biol. 1997;418:1015-8. No abstract available.

PMID:
9331823
10.

A galactose-specific sugar: phosphotransferase permease is prevalent in the non-core genome of Streptococcus mutans.

Zeng L, Xue P, Stanhope MJ, Burne RA.

Mol Oral Microbiol. 2013 Aug;28(4):292-301. doi: 10.1111/omi.12025. Epub 2013 Feb 20.

11.
12.

Utilization of lactose and galactose by Streptococcus mutans: transport, toxicity, and carbon catabolite repression.

Zeng L, Das S, Burne RA.

J Bacteriol. 2010 May;192(9):2434-44. doi: 10.1128/JB.01624-09. Epub 2010 Feb 26.

13.
14.

CcpA-mediated repression of Clostridium difficile toxin gene expression.

Antunes A, Martin-Verstraete I, Dupuy B.

Mol Microbiol. 2011 Feb;79(4):882-99. doi: 10.1111/j.1365-2958.2010.07495.x. Epub 2010 Dec 28.

17.

Carbohydrate uptake in the oral pathogen Streptococcus mutans: mechanisms and regulation by protein phosphorylation.

Jacobson GR, Lodge J, Poy F.

Biochimie. 1989 Sep-Oct;71(9-10):997-1004. Review.

PMID:
2557096
18.

Effect of a glucose impulse on the CcpA regulon in Staphylococcus aureus.

Seidl K, Müller S, François P, Kriebitzsch C, Schrenzel J, Engelmann S, Bischoff M, Berger-Bächi B.

BMC Microbiol. 2009 May 18;9:95. doi: 10.1186/1471-2180-9-95.

19.

Characterization of the functional domains of the SloR metalloregulatory protein in Streptococcus mutans.

Haswell JR, Pruitt BW, Cornacchione LP, Coe CL, Smith EG, Spatafora GA.

J Bacteriol. 2013 Jan;195(1):126-34. doi: 10.1128/JB.01648-12. Epub 2012 Oct 26.

20.
Items per page

Supplemental Content

Write to the Help Desk