Format
Items per page
Sort by

Send to:

Choose Destination

Links from PubMed

Items: 1 to 20 of 101

1.

Highly efficient core-shell CuInS2-Mn doped CdS quantum dot sensitized solar cells.

Luo J, Wei H, Huang Q, Hu X, Zhao H, Yu R, Li D, Luo Y, Meng Q.

Chem Commun (Camb). 2013 May 10;49(37):3881-3. doi: 10.1039/c3cc40715b.

PMID:
23549369
2.

A strategy to improve the energy conversion efficiency and stability of quantum dot-sensitized solar cells using manganese-doped cadmium sulfide quantum dots.

Gopi CV, Venkata-Haritha M, Kim SK, Kim HJ.

Dalton Trans. 2015 Jan 14;44(2):630-8. doi: 10.1039/c4dt03063j. Epub 2014 Nov 10.

PMID:
25381887
3.

Improved performance of CuInS2 quantum dot-sensitized solar cells based on a multilayered architecture.

Chang JY, Lin JM, Su LF, Chang CF.

ACS Appl Mater Interfaces. 2013 Sep 11;5(17):8740-52. doi: 10.1021/am402547e. Epub 2013 Aug 23.

PMID:
23937511
4.

Microwave assisted aqueous synthesis of core-shell CdSe(x)Te(1-x)-CdS quantum dots for high performance sensitized solar cells.

Luo J, Wei H, Li F, Huang Q, Li D, Luo Y, Meng Q.

Chem Commun (Camb). 2014 Apr 4;50(26):3464-6. doi: 10.1039/c3cc49335k. Epub 2014 Feb 19.

PMID:
24554167
5.

Efficient "green" quantum dot-sensitized solar cells based on Cu2S-CuInS2-ZnSe architecture.

Chang JY, Su LF, Li CH, Chang CC, Lin JM.

Chem Commun (Camb). 2012 May 18;48(40):4848-50. doi: 10.1039/c2cc31229h. Epub 2012 Apr 13.

PMID:
22498756
6.

CuInS2-Sensitized Quantum Dot Solar Cell. Electrophoretic Deposition, Excited-State Dynamics, and Photovoltaic Performance.

Santra PK, Nair PV, George Thomas K, Kamat PV.

J Phys Chem Lett. 2013 Mar 7;4(5):722-9. doi: 10.1021/jz400181m. Epub 2013 Feb 13.

PMID:
26281925
7.

Sensitized solar cells with colloidal PbS-CdS core-shell quantum dots.

Lai LH, Protesescu L, Kovalenko MV, Loi MA.

Phys Chem Chem Phys. 2014 Jan 14;16(2):736-42. doi: 10.1039/c3cp54145b.

PMID:
24270835
8.

Dynamic study of highly efficient CdS/CdSe quantum dot-sensitized solar cells fabricated by electrodeposition.

Yu XY, Liao JY, Qiu KQ, Kuang DB, Su CY.

ACS Nano. 2011 Dec 27;5(12):9494-500. doi: 10.1021/nn203375g. Epub 2011 Nov 2.

PMID:
22032641
9.

High-efficiency cascade CdS/CdSe quantum dot-sensitized solar cells based on hierarchical tetrapod-like ZnO nanoparticles.

Cheng HM, Huang KY, Lee KM, Yu P, Lin SC, Huang JH, Wu CG, Tang J.

Phys Chem Chem Phys. 2012 Oct 21;14(39):13539-48.

PMID:
22825982
10.

Highly efficient inverted type-I CdS/CdSe core/shell structure QD-sensitized solar cells.

Pan Z, Zhang H, Cheng K, Hou Y, Hua J, Zhong X.

ACS Nano. 2012 May 22;6(5):3982-91. doi: 10.1021/nn300278z. Epub 2012 Apr 24.

PMID:
22509717
11.

P3HT as hole transport material and assistant light absorber in CdS quantum dots-sensitized solid-state solar cells.

Qian J, Liu QS, Li G, Jiang KJ, Yang LM, Song Y.

Chem Commun (Camb). 2011 Jun 14;47(22):6461-3. doi: 10.1039/c1cc11595b. Epub 2011 May 6.

PMID:
21552591
12.

Development of nonstoichiometric CuInSâ‚‚ as a light-harvesting photoanode and catalytic photocathode in a sensitized solar cell.

Chang JY, Chang SC, Tzing SH, Li CH.

ACS Appl Mater Interfaces. 2014 Dec 24;6(24):22272-81. doi: 10.1021/am5061992. Epub 2014 Dec 3.

PMID:
25420094
13.

Enhancing the Performance of Sensitized Solar Cells with PbS/CH3NH3PbI3 Core/Shell Quantum Dots.

Seo G, Seo J, Ryu S, Yin W, Ahn TK, Seok SI.

J Phys Chem Lett. 2014 Jun 5;5(11):2015-20. doi: 10.1021/jz500815h. Epub 2014 May 23.

PMID:
26273888
14.

Mn-doped quantum dot sensitized solar cells: a strategy to boost efficiency over 5%.

Santra PK, Kamat PV.

J Am Chem Soc. 2012 Feb 8;134(5):2508-11. doi: 10.1021/ja211224s. Epub 2012 Jan 27.

PMID:
22280479
15.

CdS/CdSe quantum dot shell decorated vertical ZnO nanowire arrays by spin-coating-based SILAR for photoelectrochemical cells and quantum-dot-sensitized solar cells.

Zhang R, Luo QP, Chen HY, Yu XY, Kuang DB, Su CY.

Chemphyschem. 2012 Apr 23;13(6):1435-9. doi: 10.1002/cphc.201101028. Epub 2012 Mar 19.

PMID:
22431344
16.

Fibrous CdS/CdSe quantum dot co-sensitized solar cells based on ordered TiO2 nanotube arrays.

Huang S, Zhang Q, Huang X, Guo X, Deng M, Li D, Luo Y, Shen Q, Toyoda T, Meng Q.

Nanotechnology. 2010 Sep 17;21(37):375201. doi: 10.1088/0957-4484/21/37/375201. Epub 2010 Aug 17.

PMID:
20714055
17.

Exploring the effect of band alignment and surface states on photoinduced electron transfer from CuInS2/CdS core/shell quantum dots to TiO2 electrodes.

Sun M, Zhu D, Ji W, Jing P, Wang X, Xiang W, Zhao J.

ACS Appl Mater Interfaces. 2013 Dec 11;5(23):12681-8. doi: 10.1021/am4040224. Epub 2013 Nov 19.

PMID:
24206570
18.

CuInS2 quantum dot-sensitized TiO2 nanorod array photoelectrodes: synthesis and performance optimization.

Zhou Z, Yuan S, Fan J, Hou Z, Zhou W, Du Z, Wu S.

Nanoscale Res Lett. 2012 Nov 27;7(1):652. doi: 10.1186/1556-276X-7-652.

19.

Electrocatalytic sulfur electrodes for CdS/CdSe quantum dot-sensitized solar cells.

Yang Z, Chen CY, Liu CW, Chang HT.

Chem Commun (Camb). 2010 Aug 14;46(30):5485-7. doi: 10.1039/c0cc00642d. Epub 2010 Jun 30.

PMID:
20593083
20.

Hybrid-type quantum-dot cosensitized ZnO nanowire solar cell with enhanced visible-light harvesting.

Kim H, Jeong H, An TK, Park CE, Yong K.

ACS Appl Mater Interfaces. 2013 Jan 23;5(2):268-75. doi: 10.1021/am301960h. Epub 2012 Dec 24.

PMID:
23231810
Format
Items per page
Sort by

Send to:

Choose Destination

Supplemental Content

Write to the Help Desk