Display Settings:

Format
Items per page
Sort by

Send to:

Choose Destination

Results: 1 to 20 of 118

1.

Bioleaching of rare earth and radioactive elements from red mud using Penicillium tricolor RM-10.

Qu Y, Lian B.

Bioresour Technol. 2013 May;136:16-23. doi: 10.1016/j.biortech.2013.03.070. Epub 2013 Mar 20.

PMID:
23548400
[PubMed - indexed for MEDLINE]
2.

Bioleaching of tungsten-rich spent hydrocracking catalyst using Penicillium simplicissimum.

Amiri F, Yaghmaei S, Mousavi SM.

Bioresour Technol. 2011 Jan;102(2):1567-73. doi: 10.1016/j.biortech.2010.08.087. Epub 2010 Sep 21.

PMID:
20863693
[PubMed - indexed for MEDLINE]
3.

Bioleaching of heavy metals from a contaminated soil using indigenous Penicillium chrysogenum strain F1.

Deng X, Chai L, Yang Z, Tang C, Tong H, Yuan P.

J Hazard Mater. 2012 Sep 30;233-234:25-32. doi: 10.1016/j.jhazmat.2012.06.054. Epub 2012 Jul 1.

PMID:
22795840
[PubMed - indexed for MEDLINE]
4.

[Cu and Fe bioleaching in low-grade chalcopyrite and bioleaching mechanisms using Penicillium janthinellum strain GXCR].

Zhou Y, Huang X, Huang G, Bai X, Tang X, Li Y.

Sheng Wu Gong Cheng Xue Bao. 2008 Nov;24(11):1993-2002. Chinese.

PMID:
19256351
[PubMed - indexed for MEDLINE]
5.

Analysis of reasons for decline of bioleaching efficiency of spent Zn-Mn batteries at high pulp densities and exploration measure for improving performance.

Xin B, Jiang W, Li X, Zhang K, Liu C, Wang R, Wang Y.

Bioresour Technol. 2012 May;112:186-92. doi: 10.1016/j.biortech.2012.02.133. Epub 2012 Mar 6.

PMID:
22437046
[PubMed - indexed for MEDLINE]
6.

Bioleaching mechanism of heavy metals in the mixture of contaminated soil and slag by using indigenous Penicillium chrysogenum strain F1.

Deng X, Chai L, Yang Z, Tang C, Wang Y, Shi Y.

J Hazard Mater. 2013 Mar 15;248-249:107-14. doi: 10.1016/j.jhazmat.2012.12.051. Epub 2013 Jan 4.

PMID:
23352906
[PubMed - indexed for MEDLINE]
7.

Comparative evaluation of microbial and chemical leaching processes for heavy metal removal from dewatered metal plating sludge.

Bayat B, Sari B.

J Hazard Mater. 2010 Feb 15;174(1-3):763-9. doi: 10.1016/j.jhazmat.2009.09.117. Epub 2009 Sep 30.

PMID:
19880247
[PubMed - indexed for MEDLINE]
8.

Effect of earthworms (Eisenia fetida) on the fractionation and bioavailability of rare earth elements in nine Chinese soils.

Wen B, Liu Y, Hu XY, Shan XQ.

Chemosphere. 2006 May;63(7):1179-86. Epub 2005 Nov 9.

PMID:
16289225
[PubMed - indexed for MEDLINE]
9.

Biological leaching of heavy metals from a contaminated soil by Aspergillus niger.

Ren WX, Li PJ, Geng Y, Li XJ.

J Hazard Mater. 2009 Aug 15;167(1-3):164-9. doi: 10.1016/j.jhazmat.2008.12.104. Epub 2008 Dec 30.

PMID:
19232463
[PubMed - indexed for MEDLINE]
10.

Extraction of lithium from spodumene by bioleaching.

Rezza I, Salinas E, Calvente V, Benuzzi D, Sanz de Tosetti MI.

Lett Appl Microbiol. 1997 Sep;25(3):172-6.

PMID:
9351258
[PubMed - indexed for MEDLINE]
11.

Field evaluation of in situ remediation of a heavy metal contaminated soil using lime and red-mud.

Gray CW, Dunham SJ, Dennis PG, Zhao FJ, McGrath SP.

Environ Pollut. 2006 Aug;142(3):530-9.

PMID:
16321462
[PubMed - indexed for MEDLINE]
12.

Extraction of manganese from electrolytic manganese residue by bioleaching.

Xin B, Chen B, Duan N, Zhou C.

Bioresour Technol. 2011 Jan;102(2):1683-7. doi: 10.1016/j.biortech.2010.09.107. Epub 2010 Nov 2.

PMID:
21050747
[PubMed - indexed for MEDLINE]
13.

Changes in nutrient profile of soil subjected to bioleaching for removal of heavy metals using Acidithiobacillus thiooxidans.

NareshKumar R, Nagendran R.

J Hazard Mater. 2008 Aug 15;156(1-3):102-7. doi: 10.1016/j.jhazmat.2007.12.001. Epub 2007 Dec 7.

PMID:
18206305
[PubMed - indexed for MEDLINE]
14.

Process controls for improving bioleaching performance of both Li and Co from spent lithium ion batteries at high pulp density and its thermodynamics and kinetics exploration.

Niu Z, Zou Y, Xin B, Chen S, Liu C, Li Y.

Chemosphere. 2014 Aug;109:92-8. doi: 10.1016/j.chemosphere.2014.02.059. Epub 2014 Apr 22.

PMID:
24873712
[PubMed - indexed for MEDLINE]
15.

Interactions of microorganisms with rare earth ions and their utilization for separation and environmental technology.

Moriwaki H, Yamamoto H.

Appl Microbiol Biotechnol. 2013 Jan;97(1):1-8. doi: 10.1007/s00253-012-4519-9. Epub 2012 Nov 1. Review.

PMID:
23111596
[PubMed - indexed for MEDLINE]
16.

Investigation of the separation of scandium and rare earth elements from red mud by use of reversed-phase HPLC.

Tsakanika LV, Ochsenk├╝hn-Petropoulou MT, Mendrinos LN.

Anal Bioanal Chem. 2004 Jul;379(5-6):796-802. Epub 2004 Jun 18.

PMID:
15221192
[PubMed]
17.

[Leaching and vertical transport of Zirconium-95 in soils].

Liu L, Shi J, Zhao X, Zhang Y.

Huan Jing Ke Xue. 2001 Nov;22(6):95-8. Chinese.

PMID:
11855192
[PubMed - indexed for MEDLINE]
18.

Effect of solids concentration on removal of heavy metals from mine tailings via bioleaching.

Liu YG, Zhou M, Zeng GM, Li X, Xu WH, Fan T.

J Hazard Mater. 2007 Mar 6;141(1):202-8. Epub 2006 Jul 1.

PMID:
16887262
[PubMed - indexed for MEDLINE]
19.

Radiological restrictions of using red mud as building material additive.

Gu H, Wang N, Liu S.

Waste Manag Res. 2012 Sep;30(9):961-5. doi: 10.1177/0734242X12451308. Epub 2012 Jun 29.

PMID:
22751852
[PubMed - indexed for MEDLINE]
20.

Biosorption of Acid Black 172 and Congo Red from aqueous solution by nonviable Penicillium YW 01: kinetic study, equilibrium isotherm and artificial neural network modeling.

Yang Y, Wang G, Wang B, Li Z, Jia X, Zhou Q, Zhao Y.

Bioresour Technol. 2011 Jan;102(2):828-34. doi: 10.1016/j.biortech.2010.08.125. Epub 2010 Sep 6.

PMID:
20869234
[PubMed - indexed for MEDLINE]

Display Settings:

Format
Items per page
Sort by

Send to:

Choose Destination

Supplemental Content

Write to the Help Desk