Format
Items per page
Sort by

Send to:

Choose Destination

Links from PubMed

Items: 1 to 20 of 114

1.

Biased Brownian stepping rotation of FoF1-ATP synthase driven by proton motive force.

Watanabe R, Tabata KV, Iino R, Ueno H, Iwamoto M, Oiki S, Noji H.

Nat Commun. 2013;4:1631. doi: 10.1038/ncomms2631.

PMID:
23535652
2.

36 degrees step size of proton-driven c-ring rotation in FoF1-ATP synthase.

Düser MG, Zarrabi N, Cipriano DJ, Ernst S, Glick GD, Dunn SD, Börsch M.

EMBO J. 2009 Sep 16;28(18):2689-96. doi: 10.1038/emboj.2009.213. Epub 2009 Jul 30.

3.

ATP-driven stepwise rotation of FoF1-ATP synthase.

Ueno H, Suzuki T, Kinosita K Jr, Yoshida M.

Proc Natl Acad Sci U S A. 2005 Feb 1;102(5):1333-8. Epub 2005 Jan 24.

4.

Subunit rotation in Escherichia coli FoF1-ATP synthase during oxidative phosphorylation.

Zhou Y, Duncan TM, Cross RL.

Proc Natl Acad Sci U S A. 1997 Sep 30;94(20):10583-7.

5.

Chemomechanical coupling of human mitochondrial F1-ATPase motor.

Suzuki T, Tanaka K, Wakabayashi C, Saita E, Yoshida M.

Nat Chem Biol. 2014 Nov;10(11):930-6. doi: 10.1038/nchembio.1635. Epub 2014 Sep 21.

PMID:
25242551
6.

Subnanometre-resolution structure of the intact Thermus thermophilus H+-driven ATP synthase.

Lau WC, Rubinstein JL.

Nature. 2011 Dec 18;481(7380):214-8. doi: 10.1038/nature10699.

PMID:
22178924
7.

The mechanism of rotating proton pumping ATPases.

Nakanishi-Matsui M, Sekiya M, Nakamoto RK, Futai M.

Biochim Biophys Acta. 2010 Aug;1797(8):1343-52. doi: 10.1016/j.bbabio.2010.02.014. Epub 2010 Feb 17. Review.

8.

Rotation and structure of FoF1-ATP synthase.

Okuno D, Iino R, Noji H.

J Biochem. 2011 Jun;149(6):655-64. doi: 10.1093/jb/mvr049. Epub 2011 Apr 26. Review.

PMID:
21524994
9.

Fo-driven Rotation in the ATP Synthase Direction against the Force of F1 ATPase in the FoF1 ATP Synthase.

Martin J, Hudson J, Hornung T, Frasch WD.

J Biol Chem. 2015 Apr 24;290(17):10717-28. doi: 10.1074/jbc.M115.646430. Epub 2015 Feb 24.

10.

Rotary torque produced by proton motive force in FoF1 motor.

Yinghao Z, Jun W, Yuanbo C, Jiachang Y, Xiaohong F.

Biochem Biophys Res Commun. 2005 May 27;331(1):370-4. Erratum in: Biochem Biophys Res Commun. 2006 Jul 14;345(4):1663.

PMID:
15845402
11.
12.

Rotation of the epsilon subunit during catalysis by Escherichia coli FOF1-ATP synthase.

Bulygin VV, Duncan TM, Cross RL.

J Biol Chem. 1998 Nov 27;273(48):31765-9.

13.

Load-dependent destabilization of the γ-rotor shaft in FOF1 ATP synthase revealed by hydrogen/deuterium-exchange mass spectrometry.

Vahidi S, Bi Y, Dunn SD, Konermann L.

Proc Natl Acad Sci U S A. 2016 Mar 1;113(9):2412-7. doi: 10.1073/pnas.1520464113. Epub 2016 Feb 16.

PMID:
26884184
14.

The gamma-subunit rotation and torque generation in F1-ATPase from wild-type or uncoupled mutant Escherichia coli.

Omote H, Sambonmatsu N, Saito K, Sambongi Y, Iwamoto-Kihara A, Yanagida T, Wada Y, Futai M.

Proc Natl Acad Sci U S A. 1999 Jul 6;96(14):7780-4.

16.

Single-molecule observation of rotation of F1-ATPase through microbeads.

Nishizaka T, Mizutani K, Masaike T.

Methods Mol Biol. 2007;392:171-81.

PMID:
17951718
17.

Proton slip in the ATP synthase of Rhodobacter capsulatus: induction, proton conduction, and nucleotide dependence.

Feniouk BA, Mulkidjanian AY, Junge W.

Biochim Biophys Acta. 2005 Jan 7;1706(1-2):184-94.

18.
19.

Assembly of the Escherichia coli FoF1 ATP synthase involves distinct subcomplex formation.

Deckers-Hebestreit G.

Biochem Soc Trans. 2013 Oct;41(5):1288-93. doi: 10.1042/BST20130096.

PMID:
24059521
Format
Items per page
Sort by

Send to:

Choose Destination

Supplemental Content

Write to the Help Desk