Format
Items per page
Sort by

Send to:

Choose Destination

Results: 1 to 20 of 104

1.

Development of cortical bone geometry in the human femoral and tibial diaphysis.

Gosman JH, Hubbell ZR, Shaw CN, Ryan TM.

Anat Rec (Hoboken). 2013 May;296(5):774-87. doi: 10.1002/ar.22688. Epub 2013 Mar 27.

PMID:
23533061
[PubMed - indexed for MEDLINE]
Free Article
2.

Periosteal versus true cross-sectional geometry: a comparison along humeral, femoral, and tibial diaphyses.

Macintosh AA, Davies TG, Ryan TM, Shaw CN, Stock JT.

Am J Phys Anthropol. 2013 Mar;150(3):442-52. doi: 10.1002/ajpa.22218. Epub 2013 Jan 28.

PMID:
23359138
[PubMed - indexed for MEDLINE]
3.

Disruption of aldehyde dehydrogenase 2 gene results in altered cortical bone structure and increased cortical bone mineral density in the femoral diaphysis of mice.

Tsuchiya T, Sakai A, Menuki K, Mori T, Takeuchi Y, Kanoh S, Utsunomiya H, Murai T, Isse T, Kawamoto T, Nakamura T.

Bone. 2013 Apr;53(2):358-68. doi: 10.1016/j.bone.2012.12.049. Epub 2013 Jan 10.

PMID:
23313283
[PubMed - indexed for MEDLINE]
4.

Postcranial robusticity in Homo. III: Ontogeny.

Ruff CB, Walker A, Trinkaus E.

Am J Phys Anthropol. 1994 Jan;93(1):35-54.

PMID:
8141241
[PubMed - indexed for MEDLINE]
5.

Discordant recovery of bone mass and mechanical properties during prolonged recovery from disuse.

Shirazi-Fard Y, Kupke JS, Bloomfield SA, Hogan HA.

Bone. 2013 Jan;52(1):433-43. doi: 10.1016/j.bone.2012.09.021. Epub 2012 Sep 24.

PMID:
23017660
[PubMed - indexed for MEDLINE]
6.

Intensity, repetitiveness, and directionality of habitual adolescent mobility patterns influence the tibial diaphysis morphology of athletes.

Shaw CN, Stock JT.

Am J Phys Anthropol. 2009 Sep;140(1):149-59. doi: 10.1002/ajpa.21064.

PMID:
19358289
[PubMed - indexed for MEDLINE]
7.
8.

Postnatal ontogeny of tibia and femur form in two human populations: a multivariate morphometric analysis.

Frelat MA, Mittereocker P.

Am J Hum Biol. 2011 Nov-Dec;23(6):796-804. doi: 10.1002/ajhb.21217. Epub 2011 Sep 29.

PMID:
21957036
[PubMed - indexed for MEDLINE]
9.

Examining bone surfaces across puberty: a 20-month pQCT trial.

Kontulainen SA, Macdonald HM, Khan KM, McKay HA.

J Bone Miner Res. 2005 Jul;20(7):1202-7. Epub 2005 Feb 28.

PMID:
15940373
[PubMed - indexed for MEDLINE]
10.

Skeletal growth in early and late Neolithic foragers from the Cis-Baikal region of Eastern Siberia.

Temple DH, Bazaliiskii VI, Goriunova OI, Weber AW.

Am J Phys Anthropol. 2014 Mar;153(3):377-86. doi: 10.1002/ajpa.22436. Epub 2013 Nov 22.

PMID:
24264164
[PubMed - indexed for MEDLINE]
11.

The distal femoral and proximal tibial growth plates: MR imaging, three-dimensional modeling and estimation of area and volume.

Craig JG, Cody DD, Van Holsbeeck M.

Skeletal Radiol. 2004 Jun;33(6):337-44. Epub 2004 Apr 3.

PMID:
15064874
[PubMed - indexed for MEDLINE]
12.

Estimating human long bone cross-sectional geometric properties: a comparison of noninvasive methods.

O'Neill MC, Ruff CB.

J Hum Evol. 2004 Oct;47(4):221-35.

PMID:
15454334
[PubMed - indexed for MEDLINE]
13.

The influence of relative body breadth on the diaphyseal morphology of the human lower limb.

Davies TG, Stock JT.

Am J Hum Biol. 2014 Nov-Dec;26(6):822-35. doi: 10.1002/ajhb.22606. Epub 2014 Aug 28.

PMID:
25163696
[PubMed - in process]
14.

Exploring femoral diaphyseal shape variation in wild and captive chimpanzees by means of morphometric mapping: a test of Wolff's law.

Morimoto N, Ponce de León MS, Zollikofer CP.

Anat Rec (Hoboken). 2011 Apr;294(4):589-609. doi: 10.1002/ar.21346. Epub 2011 Feb 15.

PMID:
21328564
[PubMed - indexed for MEDLINE]
Free Article
15.

Bone geometry and density in the skeleton of pre-pubertal gymnasts and school children.

Ward KA, Roberts SA, Adams JE, Mughal MZ.

Bone. 2005 Jun;36(6):1012-8.

PMID:
15876561
[PubMed - indexed for MEDLINE]
16.

Sex-specific developmental changes in muscle size and bone geometry at the femoral shaft.

Högler W, Blimkie CJ, Cowell CT, Inglis D, Rauch F, Kemp AF, Wiebe P, Duncan CS, Farpour-Lambert N, Woodhead HJ.

Bone. 2008 May;42(5):982-9. doi: 10.1016/j.bone.2008.01.008. Epub 2008 Jan 26.

PMID:
18337201
[PubMed - indexed for MEDLINE]
17.

Strength indices from pQCT imaging predict up to 85% of variance in bone failure properties at tibial epiphysis and diaphysis.

Kontulainen SA, Johnston JD, Liu D, Leung C, Oxland TR, McKay HA.

J Musculoskelet Neuronal Interact. 2008 Oct-Dec;8(4):401-9.

PMID:
19147978
[PubMed - indexed for MEDLINE]
Free Article
18.

Direction-specific diaphyseal geometry and mineral mass distribution of tibia and fibula: a pQCT study of female athletes representing different exercise loading types.

Rantalainen T, Nikander R, Heinonen A, Suominen H, Sievänen H.

Calcif Tissue Int. 2010 Jun;86(6):447-54. doi: 10.1007/s00223-010-9358-z. Epub 2010 Apr 10.

PMID:
20383493
[PubMed - indexed for MEDLINE]
19.

Maturity- and sex-related changes in tibial bone geometry, strength and bone-muscle strength indices during growth: a 20-month pQCT study.

Macdonald HM, Kontulainen SA, Mackelvie-O'Brien KJ, Petit MA, Janssen P, Khan KM, McKay HA.

Bone. 2005 Jun;36(6):1003-11. Epub 2005 Apr 8.

PMID:
15823517
[PubMed - indexed for MEDLINE]
20.

Changes in bone density during childhood and adolescence: an approach based on bone's biological organization.

Rauch F, Schoenau E.

J Bone Miner Res. 2001 Apr;16(4):597-604. Review.

PMID:
11315987
[PubMed - indexed for MEDLINE]
Format
Items per page
Sort by

Send to:

Choose Destination

Supplemental Content

Write to the Help Desk