Display Settings:

Format
Items per page
Sort by

Send to:

Choose Destination

Results: 1 to 20 of 119

1.

Exercise training lowers the enhanced tonically active glutamatergic input to the rostral ventrolateral medulla in hypertensive rats.

Zha YP, Wang YK, Deng Y, Zhang RW, Tan X, Yuan WJ, Deng XM, Wang WZ.

CNS Neurosci Ther. 2013 Apr;19(4):244-51. doi: 10.1111/cns.12065.

PMID:
23521912
[PubMed - indexed for MEDLINE]
2.

Excitatory amino acids in the rostral ventrolateral medulla support blood pressure in spontaneously hypertensive rats.

Ito S, Komatsu K, Tsukamoto K, Sved AF.

Hypertension. 2000 Jan;35(1 Pt 2):413-7.

PMID:
10642334
[PubMed - indexed for MEDLINE]
Free Article
3.

Enhanced response from the caudal pressor area in spontaneously hypertensive rats.

Yajima Y, Ito S, Komatsu K, Tsukamoto K, Matsumoto K, Hirayama A.

Brain Res. 2008 Aug 28;1227:89-95. doi: 10.1016/j.brainres.2008.06.047. Epub 2008 Jun 21.

PMID:
18602899
[PubMed - indexed for MEDLINE]
4.

Acetylcholine release in the rostral ventrolateral medulla of spontaneously hypertensive rats.

Kubo T, Ishizuka T, Asari T, Fukumori R.

Clin Exp Pharmacol Physiol Suppl. 1995 Dec;22(1):S40-2.

PMID:
9072437
[PubMed - indexed for MEDLINE]
5.

Differential muscarinic receptor gene expression levels in the ventral medulla of spontaneously hypertensive and Wistar-Kyoto rats: role in sympathetic baroreflex function.

Kumar NN, Ferguson J, Padley JR, Pilowsky PM, Goodchild AK.

J Hypertens. 2009 May;27(5):1001-8.

PMID:
19402224
[PubMed - indexed for MEDLINE]
6.

Exercise training enhances elastin, fibrillin and nitric oxide in the aorta wall of spontaneously hypertensive rats.

Moraes-Teixeira Jde A, FĂ©lix A, Fernandes-Santos C, Moura AS, Mandarim-de-Lacerda CA, de Carvalho JJ.

Exp Mol Pathol. 2010 Dec;89(3):351-7. doi: 10.1016/j.yexmp.2010.08.004. Epub 2010 Aug 26.

PMID:
20800592
[PubMed - indexed for MEDLINE]
7.

Overexpression of angiotensin-converting enzyme 2 attenuates tonically active glutamatergic input to the rostral ventrolateral medulla in hypertensive rats.

Wang YK, Shen D, Hao Q, Yu Q, Wu ZT, Deng Y, Chen YF, Yuan WJ, Hu QK, Su DF, Wang WZ.

Am J Physiol Heart Circ Physiol. 2014 Jul 15;307(2):H182-90. doi: 10.1152/ajpheart.00518.2013. Epub 2014 May 16.

PMID:
24838502
[PubMed - in process]
8.

Neuromedin U causes biphasic cardiovascular effects and impairs baroreflex function in rostral ventrolateral medulla of spontaneously hypertensive rat.

Rahman AA, Shahid IZ, Pilowsky PM.

Peptides. 2013 Jun;44:15-24. doi: 10.1016/j.peptides.2013.03.017. Epub 2013 Mar 25.

PMID:
23538213
[PubMed - indexed for MEDLINE]
9.

Differential role of kinases in brain stem of hypertensive and normotensive rats.

Seyedabadi M, Goodchild AK, Pilowsky PM.

Hypertension. 2001 Nov;38(5):1087-92.

PMID:
11711502
[PubMed - indexed for MEDLINE]
Free Article
10.

Chronic administration of olmesartan attenuates the exaggerated pressor response to glutamate in the rostral ventrolateral medulla of SHR.

Lin Y, Matsumura K, Kagiyama S, Fukuhara M, Fujii K, Iida M.

Brain Res. 2005 Oct 5;1058(1-2):161-6. Epub 2005 Sep 6.

PMID:
16143317
[PubMed - indexed for MEDLINE]
11.

Myocardial hypoperfusion/reperfusion tolerance with exercise training in hypertension.

Reger PO, Barbe MF, Amin M, Renna BF, Hewston LA, MacDonnell SM, Houser SR, Libonati JR.

J Appl Physiol (1985). 2006 Feb;100(2):541-7. Epub 2005 Oct 13.

PMID:
16223983
[PubMed - indexed for MEDLINE]
Free Article
12.

Oxidative stress in the rostral ventrolateral medulla modulates excitatory and inhibitory inputs in spontaneously hypertensive rats.

Nishihara M, Hirooka Y, Matsukawa R, Kishi T, Sunagawa K.

J Hypertens. 2012 Jan;30(1):97-106. doi: 10.1097/HJH.0b013e32834e1df4.

PMID:
22157590
[PubMed - indexed for MEDLINE]
13.

Altered basal release and pressor effect of L-DOPA in the rostral ventrolateral medulla of spontaneously hypertensive rats.

Yue JL, Miyamae T, Ueda H, Misu Y.

Clin Exp Pharmacol Physiol Suppl. 1995 Dec;22(1):S43-5.

PMID:
9072438
[PubMed - indexed for MEDLINE]
14.

Exercise training improves systolic function in hypertensive myocardium.

Libonati JR, Sabri A, Xiao C, Macdonnell SM, Renna BF.

J Appl Physiol (1985). 2011 Dec;111(6):1637-43. doi: 10.1152/japplphysiol.00292.2011. Epub 2011 Sep 15.

PMID:
21921241
[PubMed - indexed for MEDLINE]
Free PMC Article
15.

Enhanced release of acetylcholine in the rostral ventrolateral medulla of spontaneously hypertensive rats.

Kubo T, Ishizuka T, Fukumori R, Asari T, Hagiwara Y.

Brain Res. 1995 Jul 17;686(1):1-9.

PMID:
7583259
[PubMed - indexed for MEDLINE]
16.

Increased reactive oxygen species in rostral ventrolateral medulla contribute to neural mechanisms of hypertension in stroke-prone spontaneously hypertensive rats.

Kishi T, Hirooka Y, Kimura Y, Ito K, Shimokawa H, Takeshita A.

Circulation. 2004 May 18;109(19):2357-62. Epub 2004 Apr 26.

PMID:
15117836
[PubMed - indexed for MEDLINE]
Free Article
17.

Downregulation of basal iNOS at the rostral ventrolateral medulla is innate in SHR.

Chan JY, Wang LL, Chao YM, Chan SH.

Hypertension. 2003 Mar;41(3):563-70. Epub 2003 Feb 10.

PMID:
12623960
[PubMed - indexed for MEDLINE]
Free Article
18.

Increased superoxide anion in rostral ventrolateral medulla contributes to hypertension in spontaneously hypertensive rats via interactions with nitric oxide.

Tai MH, Wang LL, Wu KL, Chan JY.

Free Radic Biol Med. 2005 Feb 15;38(4):450-62.

PMID:
15649647
[PubMed - indexed for MEDLINE]
19.
20.

Activation of mineralocorticoid receptors in the rostral ventrolateral medulla is involved in hypertensive mechanisms in stroke-prone spontaneously hypertensive rats.

Nakagaki T, Hirooka Y, Matsukawa R, Nishihara M, Nakano M, Ito K, Hoka S, Sunagawa K.

Hypertens Res. 2012 Apr;35(4):470-6. doi: 10.1038/hr.2011.220. Epub 2012 Jan 12.

PMID:
22237482
[PubMed - indexed for MEDLINE]

Display Settings:

Format
Items per page
Sort by

Send to:

Choose Destination

Supplemental Content

Write to the Help Desk