Format
Sort by

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 138

1.

Quantitative trait analysis of yeast biodiversity yields novel gene tools for metabolic engineering.

Hubmann G, Foulquié-Moreno MR, Nevoigt E, Duitama J, Meurens N, Pais TM, Mathé L, Saerens S, Nguyen HT, Swinnen S, Verstrepen KJ, Concilio L, de Troostembergh JC, Thevelein JM.

Metab Eng. 2013 May;17:68-81. doi: 10.1016/j.ymben.2013.02.006. Epub 2013 Mar 18.

2.

Comparative polygenic analysis of maximal ethanol accumulation capacity and tolerance to high ethanol levels of cell proliferation in yeast.

Pais TM, Foulquié-Moreno MR, Hubmann G, Duitama J, Swinnen S, Goovaerts A, Yang Y, Dumortier F, Thevelein JM.

PLoS Genet. 2013 Jun;9(6):e1003548. doi: 10.1371/journal.pgen.1003548. Epub 2013 Jun 6.

3.

Identification of multiple interacting alleles conferring low glycerol and high ethanol yield in Saccharomyces cerevisiae ethanolic fermentation.

Hubmann G, Mathé L, Foulquié-Moreno MR, Duitama J, Nevoigt E, Thevelein JM.

Biotechnol Biofuels. 2013 Jun 11;6(1):87. doi: 10.1186/1754-6834-6-87.

4.

Identification of novel causative genes determining the complex trait of high ethanol tolerance in yeast using pooled-segregant whole-genome sequence analysis.

Swinnen S, Schaerlaekens K, Pais T, Claesen J, Hubmann G, Yang Y, Demeke M, Foulquié-Moreno MR, Goovaerts A, Souvereyns K, Clement L, Dumortier F, Thevelein JM.

Genome Res. 2012 May;22(5):975-84. doi: 10.1101/gr.131698.111. Epub 2012 Mar 7.

5.

QTL analysis of high thermotolerance with superior and downgraded parental yeast strains reveals new minor QTLs and converges on novel causative alleles involved in RNA processing.

Yang Y, Foulquié-Moreno MR, Clement L, Erdei E, Tanghe A, Schaerlaekens K, Dumortier F, Thevelein JM.

PLoS Genet. 2013;9(8):e1003693. doi: 10.1371/journal.pgen.1003693. Epub 2013 Aug 15.

6.

QTL mapping by pooled-segregant whole-genome sequencing in yeast.

Pais TM, Foulquié-Moreno MR, Thevelein JM.

Methods Mol Biol. 2014;1152:251-66. doi: 10.1007/978-1-4939-0563-8_15.

PMID:
24744038
7.

Elimination of glycerol production in anaerobic cultures of a Saccharomyces cerevisiae strain engineered to use acetic acid as an electron acceptor.

Guadalupe Medina V, Almering MJ, van Maris AJ, Pronk JT.

Appl Environ Microbiol. 2010 Jan;76(1):190-5. doi: 10.1128/AEM.01772-09. Epub 2009 Nov 13.

8.

Evolutionary engineering of a glycerol-3-phosphate dehydrogenase-negative, acetate-reducing Saccharomyces cerevisiae strain enables anaerobic growth at high glucose concentrations.

Guadalupe-Medina V, Metz B, Oud B, van Der Graaf CM, Mans R, Pronk JT, van Maris AJ.

Microb Biotechnol. 2014 Jan;7(1):44-53. doi: 10.1111/1751-7915.12080. Epub 2013 Sep 4.

9.

In silico aided metabolic engineering of Saccharomyces cerevisiae for improved bioethanol production.

Bro C, Regenberg B, Förster J, Nielsen J.

Metab Eng. 2006 Mar;8(2):102-11. Epub 2005 Nov 10.

PMID:
16289778
10.

The genetic basis of variation in clean lineages of Saccharomyces cerevisiae in response to stresses encountered during bioethanol fermentations.

Greetham D, Wimalasena TT, Leung K, Marvin ME, Chandelia Y, Hart AJ, Phister TG, Tucker GA, Louis EJ, Smart KA.

PLoS One. 2014 Aug 12;9(8):e103233. doi: 10.1371/journal.pone.0103233. eCollection 2014. Erratum in: PLoS One. 2015;10(3):e0119343.

11.

Minimization of glycerol synthesis in industrial ethanol yeast without influencing its fermentation performance.

Guo ZP, Zhang L, Ding ZY, Shi GY.

Metab Eng. 2011 Jan;13(1):49-59. doi: 10.1016/j.ymben.2010.11.003. Epub 2010 Nov 30.

PMID:
21126600
12.

The metabolic costs of improving ethanol yield by reducing glycerol formation capacity under anaerobic conditions in Saccharomyces cerevisiae.

Pagliardini J, Hubmann G, Alfenore S, Nevoigt E, Bideaux C, Guillouet SE.

Microb Cell Fact. 2013 Mar 28;12:29. doi: 10.1186/1475-2859-12-29.

13.

Improvement of ethanol yield from glycerol via conversion of pyruvate to ethanol in metabolically engineered Saccharomyces cerevisiae.

Yu KO, Jung J, Ramzi AB, Kim SW, Park C, Han SO.

Appl Biochem Biotechnol. 2012 Feb;166(4):856-65. doi: 10.1007/s12010-011-9475-9. Epub 2011 Dec 13.

PMID:
22161213
14.

The combination of glycerol metabolic engineering and drug resistance marker-aided genome shuffling to improve very-high-gravity fermentation performances of industrial Saccharomyces cerevisiae.

Wang PM, Zheng DQ, Liu TZ, Tao XL, Feng MG, Min H, Jiang XH, Wu XC.

Bioresour Technol. 2012 Mar;108:203-10. doi: 10.1016/j.biortech.2011.12.147. Epub 2012 Jan 8.

PMID:
22269055
15.

Oxidative stress survival in a clinical Saccharomyces cerevisiae isolate is influenced by a major quantitative trait nucleotide.

Diezmann S, Dietrich FS.

Genetics. 2011 Jul;188(3):709-22. doi: 10.1534/genetics.111.128256. Epub 2011 Apr 21.

16.

Quantitative evaluation of yeast's requirement for glycerol formation in very high ethanol performance fed-batch process.

Pagliardini J, Hubmann G, Bideaux C, Alfenore S, Nevoigt E, Guillouet SE.

Microb Cell Fact. 2010 May 21;9:36. doi: 10.1186/1475-2859-9-36.

17.

Increased ethanol production from glycerol by Saccharomyces cerevisiae strains with enhanced stress tolerance from the overexpression of SAGA complex components.

Yu KO, Jung J, Ramzi AB, Choe SH, Kim SW, Park C, Han SO.

Enzyme Microb Technol. 2012 Sep 10;51(4):237-43. doi: 10.1016/j.enzmictec.2012.07.003. Epub 2012 Jul 16.

PMID:
22883559
18.

Polygenic analysis and targeted improvement of the complex trait of high acetic acid tolerance in the yeast Saccharomyces cerevisiae.

Meijnen JP, Randazzo P, Foulquié-Moreno MR, van den Brink J, Vandecruys P, Stojiljkovic M, Dumortier F, Zalar P, Boekhout T, Gunde-Cimerman N, Kokošar J, Štajdohar M, Curk T, Petrovič U, Thevelein JM.

Biotechnol Biofuels. 2016 Jan 6;9:5. doi: 10.1186/s13068-015-0421-x. eCollection 2016.

19.

A novel strategy to construct yeast Saccharomyces cerevisiae strains for very high gravity fermentation.

Tao X, Zheng D, Liu T, Wang P, Zhao W, Zhu M, Jiang X, Zhao Y, Wu X.

PLoS One. 2012;7(2):e31235. doi: 10.1371/journal.pone.0031235. Epub 2012 Feb 17.

20.

Utilization of Saccharomyces cerevisiae recombinant strain incapable of both ethanol and glycerol biosynthesis for anaerobic bioproduction.

Ida Y, Hirasawa T, Furusawa C, Shimizu H.

Appl Microbiol Biotechnol. 2013 Jun;97(11):4811-9. doi: 10.1007/s00253-013-4760-x. Epub 2013 Feb 26.

PMID:
23435983
Items per page

Supplemental Content

Write to the Help Desk