Display Settings:

Format
Items per page
Sort by

Send to:

Choose Destination

Results: 1 to 20 of 92

1.

Photoactive porous silicon nanopowder.

Meekins BH, Lin YC, Manser JS, Manukyan K, Mukasyan AS, Kamat PV, McGinn PJ.

ACS Appl Mater Interfaces. 2013 Apr 24;5(8):2943-51. doi: 10.1021/am3031745. Epub 2013 Apr 4.

PMID:
23510512
[PubMed]
2.

Immobilisation and synthesis of DNA on Si(111), nanocrystalline porous silicon and silicon nanoparticles.

Lie LH, Patole SN, Pike AR, Ryder LC, Connolly BA, Ward AD, Tuite EM, Houlton A, Horrocks BR.

Faraday Discuss. 2004;125:235-49; discussion 293-309.

PMID:
14750674
[PubMed - indexed for MEDLINE]
3.

A novel method to synthesize highly photoactive Cu2O microcrystalline films for use in photoelectrochemical cells.

Li C, Li Y, Delaunay JJ.

ACS Appl Mater Interfaces. 2014 Jan 8;6(1):480-6. doi: 10.1021/am404527q. Epub 2013 Dec 12.

PMID:
24299015
[PubMed - in process]
4.

Hydrogen-treated TiO2 nanowire arrays for photoelectrochemical water splitting.

Wang G, Wang H, Ling Y, Tang Y, Yang X, Fitzmorris RC, Wang C, Zhang JZ, Li Y.

Nano Lett. 2011 Jul 13;11(7):3026-33. doi: 10.1021/nl201766h. Epub 2011 Jun 28.

PMID:
21710974
[PubMed - indexed for MEDLINE]
5.

Quantum dot solar cells. Tuning photoresponse through size and shape control of CdSe-TiO2 architecture.

Kongkanand A, Tvrdy K, Takechi K, Kuno M, Kamat PV.

J Am Chem Soc. 2008 Mar 26;130(12):4007-15. doi: 10.1021/ja0782706. Epub 2008 Mar 1.

PMID:
18311974
[PubMed - indexed for MEDLINE]
6.

Quantum dot solar cells. harvesting light energy with CdSe nanocrystals molecularly linked to mesoscopic TiO2 films.

Robel I, Subramanian V, Kuno M, Kamat PV.

J Am Chem Soc. 2006 Feb 22;128(7):2385-93.

PMID:
16478194
[PubMed]
7.

High-performance silicon nanowire array photoelectrochemical solar cells through surface passivation and modification.

Wang X, Peng KQ, Pan XJ, Chen X, Yang Y, Li L, Meng XM, Zhang WJ, Lee ST.

Angew Chem Int Ed Engl. 2011 Oct 10;50(42):9861-5. doi: 10.1002/anie.201104102. Epub 2011 Sep 9.

PMID:
21905189
[PubMed - indexed for MEDLINE]
8.

Electron transfer kinetics in water splitting dye-sensitized solar cells based on core-shell oxide electrodes.

Lee SH, Zhao Y, Hernandez-Pagan EA, Blasdel L, Youngblood WJ, Mallouk TE.

Faraday Discuss. 2012;155:165-76; discussion 207-22.

PMID:
22470973
[PubMed]
9.

Selective deposition of CdSe nanoparticles on reduced graphene oxide to understand photoinduced charge transfer in hybrid nanostructures.

Yu K, Lu G, Mao S, Chen K, Kim H, Wen Z, Chen J.

ACS Appl Mater Interfaces. 2011 Jul;3(7):2703-9. doi: 10.1021/am200494v. Epub 2011 Jun 22.

PMID:
21650220
[PubMed]
10.

Nanostructured thin films of C60-aniline dyad clusters: electrodeposition, charge separation, and photoelectrochemistry.

Kamat PV, Barazzouk S, Hotchandani S, Thomas KG.

Chemistry. 2000 Nov 3;6(21):3914-21.

PMID:
11126952
[PubMed]
11.

Dynamics of efficient electron-hole separation in TiO2 nanoparticles revealed by femtosecond transient absorption spectroscopy under the weak-excitation condition.

Tamaki Y, Furube A, Murai M, Hara K, Katoh R, Tachiya M.

Phys Chem Chem Phys. 2007 Mar 28;9(12):1453-60. Epub 2007 Feb 7.

PMID:
17356752
[PubMed]
12.

Delayed ignition of autocatalytic combustion precursors: low-temperature nanomaterial binder approach to electronically functional oxide films.

Kim MG, Hennek JW, Kim HS, Kanatzidis MG, Facchetti A, Marks TJ.

J Am Chem Soc. 2012 Jul 18;134(28):11583-93. doi: 10.1021/ja301941q. Epub 2012 Jul 2.

PMID:
22671035
[PubMed]
13.

Solar cells and light sensors based on nanoparticle-grafted carbon nanotube films.

Li X, Jia Y, Wei J, Zhu H, Wang K, Wu D, Cao A.

ACS Nano. 2010 Apr 27;4(4):2142-8. doi: 10.1021/nn901563y.

PMID:
20222675
[PubMed]
14.

[Excitation-wavelength dependent photoluminescence from porous silicon].

Huang YM, Zhou FF.

Guang Pu Xue Yu Guang Pu Fen Xi. 2007 Apr;27(4):762-4. Chinese.

PMID:
17608193
[PubMed]
15.
16.

Photoinduced electron transfer from the inorganic core to the organic shell of hybrid core-shell nanoparticles: impedance spectroscopy.

Guchhait A, Pal AJ.

Chem Asian J. 2012 May;7(5):1096-102. doi: 10.1002/asia.201101008. Epub 2012 Mar 21.

PMID:
22438293
[PubMed]
17.

Enhanced photoinduced desorption from metal nanoparticles by photoexcitation of confined hot electrons using femtosecond laser pulses.

Kim KH, Watanabe K, Mulugeta D, Freund HJ, Menzel D.

Phys Rev Lett. 2011 Jul 22;107(4):047401. Epub 2011 Jul 21.

PMID:
21867042
[PubMed]
18.

Photoelectrochemical properties of TiO2 nanowire arrays: a study of the dependence on length and atomic layer deposition coating.

Hwang YJ, Hahn C, Liu B, Yang P.

ACS Nano. 2012 Jun 26;6(6):5060-9. doi: 10.1021/nn300679d. Epub 2012 May 23.

PMID:
22621345
[PubMed - indexed for MEDLINE]
19.

Cu nanoparticles enable plasmonic-improved silicon photovoltaic devices.

de Souza ML, Corio P, Brolo AG.

Phys Chem Chem Phys. 2012 Dec 5;14(45):15722-8. doi: 10.1039/c2cp43475j. Epub 2012 Oct 23.

PMID:
23090151
[PubMed - indexed for MEDLINE]
20.

Porous thin films of functionalized mesoporous silica nanoparticles.

Kobler J, Bein T.

ACS Nano. 2008 Nov 25;2(11):2324-30. doi: 10.1021/nn800505g.

PMID:
19206399
[PubMed - indexed for MEDLINE]

Display Settings:

Format
Items per page
Sort by

Send to:

Choose Destination

Supplemental Content

Write to the Help Desk