Format
Items per page
Sort by

Send to:

Choose Destination

Results: 1 to 20 of 103

Similar articles for PubMed (Select 23507786)

1.

Enzyme-responsive copper sulphide nanoparticles for combined photoacoustic imaging, tumor-selective chemotherapy and photothermal therapy.

Zha Z, Zhang S, Deng Z, Li Y, Li C, Dai Z.

Chem Commun (Camb). 2013 Apr 28;49(33):3455-7. doi: 10.1039/c3cc40608c.

PMID:
23507786
2.
3.

Multifunctional nanoparticles for combined doxorubicin and photothermal treatments.

Park H, Yang J, Lee J, Haam S, Choi IH, Yoo KH.

ACS Nano. 2009 Oct 27;3(10):2919-26. doi: 10.1021/nn900215k.

PMID:
19772302
4.

X-ray triggered release of doxorubicin from nanoparticle drug carriers for cancer therapy.

Starkewolf ZB, Miyachi L, Wong J, Guo T.

Chem Commun (Camb). 2013 Mar 28;49(25):2545-7. doi: 10.1039/c3cc38100e.

PMID:
23423224
5.

Enzyme-responsive multifunctional magnetic nanoparticles for tumor intracellular drug delivery and imaging.

Yang Y, Aw J, Chen K, Liu F, Padmanabhan P, Hou Y, Cheng Z, Xing B.

Chem Asian J. 2011 Jun 6;6(6):1381-9. doi: 10.1002/asia.201000905. Epub 2011 May 4.

PMID:
21548100
6.

Folate-modified gold nanoclusters as near-infrared fluorescent probes for tumor imaging and therapy.

Chen H, Li S, Li B, Ren X, Li S, Mahounga DM, Cui S, Gu Y, Achilefu S.

Nanoscale. 2012 Sep 28;4(19):6050-64. doi: 10.1039/c2nr31616a. Epub 2012 Aug 28.

PMID:
22930451
7.

Gadolinium-chelate functionalized copper sulphide as a nanotheranostic agent for MR imaging and photothermal destruction of cancer cells.

Zhang S, Zha Z, Yue X, Liang X, Dai Z.

Chem Commun (Camb). 2013 Aug 4;49(60):6776-8. doi: 10.1039/c3cc43440k.

PMID:
23783843
8.

Encapsulating tantalum oxide into polypyrrole nanoparticles for X-ray CT/photoacoustic bimodal imaging-guided photothermal ablation of cancer.

Jin Y, Li Y, Ma X, Zha Z, Shi L, Tian J, Dai Z.

Biomaterials. 2014 Jul;35(22):5795-804. doi: 10.1016/j.biomaterials.2014.03.086. Epub 2014 Apr 18.

PMID:
24746966
9.

Cu7.2S4 nanocrystals: a novel photothermal agent with a 56.7% photothermal conversion efficiency for photothermal therapy of cancer cells.

Li B, Wang Q, Zou R, Liu X, Xu K, Li W, Hu J.

Nanoscale. 2014 Mar 21;6(6):3274-82. doi: 10.1039/c3nr06242b. Epub 2014 Feb 7.

PMID:
24509646
10.

Sustained in vitro release and cell uptake of doxorubicin adsorbed onto gold nanoparticles and covered by a polyelectrolyte complex layer.

Minati L, Antonini V, Torrengo S, Serra MD, Boustta M, Leclercq X, Migliaresi C, Vert M, Speranza G.

Int J Pharm. 2012 Nov 15;438(1-2):45-52. doi: 10.1016/j.ijpharm.2012.08.057. Epub 2012 Sep 7.

PMID:
22959992
11.

Protein-assisted fabrication of nano-reduced graphene oxide for combined in vivo photoacoustic imaging and photothermal therapy.

Sheng Z, Song L, Zheng J, Hu D, He M, Zheng M, Gao G, Gong P, Zhang P, Ma Y, Cai L.

Biomaterials. 2013 Jul;34(21):5236-43. doi: 10.1016/j.biomaterials.2013.03.090. Epub 2013 Apr 18.

PMID:
23602365
12.

Doxorubicin release triggered by alginate embedded magnetic nanoheaters: a combined therapy.

Brulé S, Levy M, Wilhelm C, Letourneur D, Gazeau F, Ménager C, Le Visage C.

Adv Mater. 2011 Feb 8;23(6):787-90. doi: 10.1002/adma.201003763. Epub 2010 Dec 9. No abstract available.

PMID:
21287643
13.

Supramolecular stacking of doxorubicin on carbon nanotubes for in vivo cancer therapy.

Liu Z, Fan AC, Rakhra K, Sherlock S, Goodwin A, Chen X, Yang Q, Felsher DW, Dai H.

Angew Chem Int Ed Engl. 2009;48(41):7668-72. doi: 10.1002/anie.200902612. No abstract available.

14.

Multifunctional hollow nanoparticles based on graft-diblock copolymers for doxorubicin delivery.

Lu PL, Chen YC, Ou TW, Chen HH, Tsai HC, Wen CJ, Lo CL, Wey SP, Lin KJ, Yen TC, Hsiue GH.

Biomaterials. 2011 Mar;32(8):2213-21. doi: 10.1016/j.biomaterials.2010.11.051. Epub 2010 Dec 22.

PMID:
21176954
15.

In vitro anticancer activity of doxorubicin-loaded gelatin-coated magnetic iron oxide nanoparticles.

Gaihre B, Khil MS, Kim HY.

J Microencapsul. 2011;28(4):286-93. doi: 10.3109/02652048.2011.559286.

PMID:
21545319
16.

Reversibly stabilized multifunctional dextran nanoparticles efficiently deliver doxorubicin into the nuclei of cancer cells.

Li YL, Zhu L, Liu Z, Cheng R, Meng F, Cui JH, Ji SJ, Zhong Z.

Angew Chem Int Ed Engl. 2009;48(52):9914-8. doi: 10.1002/anie.200904260. No abstract available.

PMID:
19937876
17.

A light-driven anti-cancer dual-therapeutic cassette enhances solid tumour regression.

Kim AR, Shin SW, Cho SW, Lee JY, Kim DI, Um SH.

Adv Healthc Mater. 2013 Sep;2(9):1252-8. doi: 10.1002/adhm.201200471. Epub 2013 Mar 14.

PMID:
23495231
18.

An in-vitro study of enzyme-responsive Prussian blue nanoparticles for combined tumor chemotherapy and photothermal therapy.

Xue P, Cheong KK, Wu Y, Kang Y.

Colloids Surf B Biointerfaces. 2015 Jan 1;125:277-83. doi: 10.1016/j.colsurfb.2014.10.059. Epub 2014 Nov 11.

PMID:
25465756
19.

Anticancer efficacy enhancement and attenuation of side effects of doxorubicin with titanium dioxide nanoparticles.

Chen Y, Wan Y, Wang Y, Zhang H, Jiao Z.

Int J Nanomedicine. 2011;6:2321-6. doi: 10.2147/IJN.S25460. Epub 2011 Oct 18.

20.

Photoacoustic imaging and temperature measurement for photothermal cancer therapy.

Shah J, Park S, Aglyamov S, Larson T, Ma L, Sokolov K, Johnston K, Milner T, Emelianov SY.

J Biomed Opt. 2008 May-Jun;13(3):034024. doi: 10.1117/1.2940362.

Format
Items per page
Sort by

Send to:

Choose Destination

Supplemental Content

Write to the Help Desk