Format
Sort by

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 66

1.

Highly conductive VO2 treated with hydrogen for supercapacitors.

Pan X, Zhao Y, Ren G, Fan Z.

Chem Commun (Camb). 2013 May 11;49(38):3943-5. doi: 10.1039/c3cc00044c. Epub 2013 Mar 18.

PMID:
23505624
2.

Supercapacitors based on self-assembled graphene organogel.

Sun Y, Wu Q, Shi G.

Phys Chem Chem Phys. 2011 Oct 14;13(38):17249-54. doi: 10.1039/c1cp22409c. Epub 2011 Aug 30.

PMID:
21879072
3.
4.

Flexible Zn2SnO4/MnO2 core/shell nanocable-carbon microfiber hybrid composites for high-performance supercapacitor electrodes.

Bao L, Zang J, Li X.

Nano Lett. 2011 Mar 9;11(3):1215-20. doi: 10.1021/nl104205s. Epub 2011 Feb 9.

PMID:
21306113
5.

Design and synthesis of MnO₂/Mn/MnO₂ sandwich-structured nanotube arrays with high supercapacitive performance for electrochemical energy storage.

Li Q, Wang ZL, Li GR, Guo R, Ding LX, Tong YX.

Nano Lett. 2012 Jul 11;12(7):3803-7. doi: 10.1021/nl301748m. Epub 2012 Jun 27.

PMID:
22730918
6.

Enhancing the supercapacitor performance of graphene/MnO2 nanostructured electrodes by conductive wrapping.

Yu G, Hu L, Liu N, Wang H, Vosgueritchian M, Yang Y, Cui Y, Bao Z.

Nano Lett. 2011 Oct 12;11(10):4438-42. doi: 10.1021/nl2026635. Epub 2011 Sep 28.

PMID:
21942427
7.

High performance of a solid-state flexible asymmetric supercapacitor based on graphene films.

Choi BG, Chang SJ, Kang HW, Park CP, Kim HJ, Hong WH, Lee S, Huh YS.

Nanoscale. 2012 Aug 21;4(16):4983-8. doi: 10.1039/c2nr30991b. Epub 2012 Jun 29.

PMID:
22751863
8.

Hydrogenated TiO2 nanotube arrays for supercapacitors.

Lu X, Wang G, Zhai T, Yu M, Gan J, Tong Y, Li Y.

Nano Lett. 2012 Mar 14;12(3):1690-6. doi: 10.1021/nl300173j. Epub 2012 Mar 5.

PMID:
22364294
9.

A green and high energy density asymmetric supercapacitor based on ultrathin MnO2 nanostructures and functional mesoporous carbon nanotube electrodes.

Jiang H, Li C, Sun T, Ma J.

Nanoscale. 2012 Feb 7;4(3):807-12. doi: 10.1039/c1nr11542a. Epub 2011 Dec 12.

PMID:
22159343
10.

High-performance supercapacitors based on vertically aligned carbon nanotubes and nonaqueous electrolytes.

Kim B, Chung H, Kim W.

Nanotechnology. 2012 Apr 20;23(15):155401. doi: 10.1088/0957-4484/23/15/155401. Epub 2012 Mar 22.

PMID:
22437007
11.

Oriented arrays of polyaniline nanorods grown on graphite nanosheets for an electrochemical supercapacitor.

Li Y, Zhao X, Yu P, Zhang Q.

Langmuir. 2013 Jan 8;29(1):493-500. doi: 10.1021/la303632d. Epub 2012 Dec 14.

PMID:
23205664
12.

Fabrication of graphene/polyaniline composite for high-performance supercapacitor electrode.

Li J, Xie H, Li Y, Wang J.

J Nanosci Nanotechnol. 2013 Feb;13(2):1132-5.

PMID:
23646587
13.

Facile coating of manganese oxide on tin oxide nanowires with high-performance capacitive behavior.

Yan J, Khoo E, Sumboja A, Lee PS.

ACS Nano. 2010 Jul 27;4(7):4247-55. doi: 10.1021/nn100592d.

PMID:
20593844
14.

Conducting polymer composite film incorporated with aligned carbon nanotubes for transparent, flexible and efficient supercapacitor.

Lin H, Li L, Ren J, Cai Z, Qiu L, Yang Z, Peng H.

Sci Rep. 2013;3:1353. doi: 10.1038/srep01353.

15.

A reversible redox strategy for SWCNT-based supercapacitors using a high-performance electrolyte.

Yu H, Wu J, Lin J, Fan L, Huang M, Lin Y, Li Y, Yu F, Qiu Z.

Chemphyschem. 2013 Feb 4;14(2):394-9. doi: 10.1002/cphc.201200816. Epub 2013 Jan 9.

PMID:
23303585
16.

Effect of temperature on the capacitance of carbon nanotube supercapacitors.

Masarapu C, Zeng HF, Hung KH, Wei B.

ACS Nano. 2009 Aug 25;3(8):2199-206. doi: 10.1021/nn900500n.

PMID:
19583250
17.

Hybrid nanomembranes for high power and high energy density supercapacitors and their yarn application.

Lee JA, Shin MK, Kim SH, Kim SJ, Spinks GM, Wallace GG, Ovalle-Robles R, Lima MD, Kozlov ME, Baughman RH.

ACS Nano. 2012 Jan 24;6(1):327-34. doi: 10.1021/nn203640a. Epub 2011 Dec 29.

PMID:
22168757
18.

In situ electrochemical polymerization of a nanorod-PANI-Graphene composite in a reverse micelle electrolyte and its application in a supercapacitor.

Hu L, Tu J, Jiao S, Hou J, Zhu H, Fray DJ.

Phys Chem Chem Phys. 2012 Dec 5;14(45):15652-6. doi: 10.1039/c2cp42192e. Epub 2012 Oct 18.

PMID:
23076399
19.

All-solid-state flexible supercapacitors based on papers coated with carbon nanotubes and ionic-liquid-based gel electrolytes.

Kang YJ, Chung H, Han CH, Kim W.

Nanotechnology. 2012 Feb 17;23(6):065401. doi: 10.1088/0957-4484/23/6/065401. Epub 2012 Jan 17. Erratum in: Nanotechnology. 2012 Jul 20;23(28):289501.

PMID:
22248712
20.

Highly conductive paper for energy-storage devices.

Hu L, Choi JW, Yang Y, Jeong S, La Mantia F, Cui LF, Cui Y.

Proc Natl Acad Sci U S A. 2009 Dec 22;106(51):21490-4. doi: 10.1073/pnas.0908858106. Epub 2009 Dec 7.

Items per page

Supplemental Content

Write to the Help Desk