Display Settings:

Format
Items per page
Sort by

Send to:

Choose Destination

Results: 1 to 20 of 90

1.

A full-scale simulation approach for atom probe tomography.

Oberdorfer C, Eich SM, Schmitz G.

Ultramicroscopy. 2013 May;128:55-67. doi: 10.1016/j.ultramic.2013.01.005. Epub 2013 Feb 9.

PMID:
23500891
[PubMed]
2.

Macromolecular crowding: chemistry and physics meet biology (Ascona, Switzerland, 10-14 June 2012).

Foffi G, Pastore A, Piazza F, Temussi PA.

Phys Biol. 2013 Aug 2;10(4):040301. [Epub ahead of print]

PMID:
23912807
[PubMed - as supplied by publisher]
3.

3D analysis of advanced nano-devices using electron and atom probe tomography.

Grenier A, Duguay S, Barnes JP, Serra R, Haberfehlner G, Cooper D, Bertin F, Barraud S, Audoit G, Arnoldi L, Cadel E, Chabli A, Vurpillot F.

Ultramicroscopy. 2014 Jan;136:185-92. doi: 10.1016/j.ultramic.2013.10.001. Epub 2013 Oct 17.

PMID:
24189616
[PubMed - in process]
4.

Interpretation of atom probe tomography data for the intermetallic TiAl+Nb by means of field evaporation simulation.

Boll T, Al-Kassab T.

Ultramicroscopy. 2013 Jan;124:1-5. doi: 10.1016/j.ultramic.2012.09.003. Epub 2012 Sep 26.

PMID:
23142738
[PubMed - indexed for MEDLINE]
5.

Multimillion atom simulations of dynamics of oxidation of an aluminum nanoparticle and nanoindentation on ceramics.

Vashishta P, Kalia RK, Nakano A.

J Phys Chem B. 2006 Mar 2;110(8):3727-33.

PMID:
16494430
[PubMed]
6.

A new approach to the determination of concentration profiles in atom probe tomography.

Felfer PJ, Gault B, Sha G, Stephenson L, Ringer SP, Cairney JM.

Microsc Microanal. 2012 Apr;18(2):359-64. doi: 10.1017/S1431927611012530. Epub 2012 Feb 3.

PMID:
22300727
[PubMed]
7.

Calibration of reconstruction parameters in atom probe tomography using a single crystallographic orientation.

Suram SK, Rajan K.

Ultramicroscopy. 2013 Sep;132:136-42. doi: 10.1016/j.ultramic.2013.02.013. Epub 2013 Feb 16.

PMID:
23507030
[PubMed]
8.

Proceedings of the Second Workshop on Theory meets Industry (Erwin-Schrödinger-Institute (ESI), Vienna, Austria, 12-14 June 2007).

Hafner J.

J Phys Condens Matter. 2008 Feb 13;20(6):060301. doi: 10.1088/0953-8984/20/06/060301. Epub 2008 Jan 24.

PMID:
21693862
[PubMed]
9.

Mapping energetics of atom probe evaporation events through first principles calculations.

Peralta J, Broderick SR, Rajan K.

Ultramicroscopy. 2013 Sep;132:143-51. doi: 10.1016/j.ultramic.2013.02.007. Epub 2013 Feb 28.

PMID:
23537885
[PubMed]
10.

A new approach to the interpretation of atom probe field-ion microscopy images.

Vurpillot F, Bostel A, Blavette D.

Ultramicroscopy. 2001 Oct;89(1-3):137-44.

PMID:
11770739
[PubMed]
11.

On the field evaporation behavior of dielectric materials in three-dimensional atom probe: a numeric simulation.

Oberdorfer C, Schmitz G.

Microsc Microanal. 2011 Feb;17(1):15-25. doi: 10.1017/S1431927610093888. Epub 2010 Oct 1.

PMID:
20883599
[PubMed]
12.

Grains and grain boundaries in single-layer graphene atomic patchwork quilts.

Huang PY, Ruiz-Vargas CS, van der Zande AM, Whitney WS, Levendorf MP, Kevek JW, Garg S, Alden JS, Hustedt CJ, Zhu Y, Park J, McEuen PL, Muller DA.

Nature. 2011 Jan 20;469(7330):389-92. doi: 10.1038/nature09718. Epub 2011 Jan 5.

PMID:
21209615
[PubMed - indexed for MEDLINE]
13.

A model to predict image formation in Atom probe Tomography.

Vurpillot F, Gaillard A, Da Costa G, Deconihout B.

Ultramicroscopy. 2013 Sep;132:152-7. doi: 10.1016/j.ultramic.2012.12.007. Epub 2012 Dec 12.

PMID:
23398963
[PubMed]
14.

Focused ion beam preparation of atom probe specimens containing a single crystallographically well-defined grain boundary.

Pérez-Willard F, Wolde-Giorgis D, Al-Kassab T, López GA, Mittemeijer EJ, Kirchheim R, Gerthsen D.

Micron. 2008;39(1):45-52. Epub 2007 Jan 20.

PMID:
17331735
[PubMed]
15.

On the use of simulated field-evaporated specimen apex shapes in atom probe tomography data reconstruction.

Larson DJ, Geiser BP, Prosa TJ, Kelly TF.

Microsc Microanal. 2012 Oct;18(5):953-63. doi: 10.1017/S1431927612001523. Epub 2012 Oct 12.

PMID:
23058657
[PubMed]
16.

A Fast and Robust Poisson-Boltzmann Solver Based on Adaptive Cartesian Grids.

Boschitsch AH, Fenley MO.

J Chem Theory Comput. 2011 May 10;7(5):1524-1540.

PMID:
21984876
[PubMed]
Free PMC Article
17.

A voxel-based finite element model for the prediction of bladder deformation.

Chai X, van Herk M, Hulshof MC, Bel A.

Med Phys. 2012 Jan;39(1):55-65. doi: 10.1118/1.3668060.

PMID:
22225275
[PubMed - indexed for MEDLINE]
18.

A Bayesian method for construction of Markov models to describe dynamics on various time-scales.

Rains EK, Andersen HC.

J Chem Phys. 2010 Oct 14;133(14):144113. doi: 10.1063/1.3496438.

PMID:
20949993
[PubMed - indexed for MEDLINE]
19.

Field evaporation behavior in [0 0 1] FePt thin films.

Torres KL, Geiser B, Moody MP, Ringer SP, Thompson GB.

Ultramicroscopy. 2011 May;111(6):512-7. doi: 10.1016/j.ultramic.2010.12.027. Epub 2010 Dec 28.

PMID:
21227589
[PubMed]
20.

Shower approach in the simulation of ion scattering from solids.

Khodyrev VA, Andrzejewski R, Rivera A, Boerma DO, Prieto JE.

Phys Rev E Stat Nonlin Soft Matter Phys. 2011 May;83(5 Pt 2):056707. Epub 2011 May 16.

PMID:
21728693
[PubMed]

Display Settings:

Format
Items per page
Sort by

Send to:

Choose Destination

Supplemental Content

Write to the Help Desk