Format
Items per page
Sort by

Send to:

Choose Destination

Results: 1 to 20 of 126

Similar articles for PubMed (Select 23500649)

1.

The capture of oxidized mercury from simulated desulphurization aqueous solutions.

Ochoa-González R, Díaz-Somoano M, Martínez-Tarazona MR.

J Environ Manage. 2013 May 15;120:55-60. doi: 10.1016/j.jenvman.2013.02.030. Epub 2013 Mar 15.

PMID:
23500649
2.

A comprehensive evaluation of the influence of air combustion and oxy-fuel combustion flue gas constituents on Hg(0) re-emission in WFGD systems.

Ochoa-González R, Díaz-Somoano M, Martínez-Tarazona MR.

J Hazard Mater. 2014 Jul 15;276:157-63. doi: 10.1016/j.jhazmat.2014.05.041. Epub 2014 May 22.

PMID:
24887118
3.

Investigation on mercury reemission from limestone-gypsum wet flue gas desulfurization slurry.

Chen C, Liu S, Gao Y, Liu Y.

ScientificWorldJournal. 2014 Mar 4;2014:581724. doi: 10.1155/2014/581724. eCollection 2014.

4.

Experimental study on the absorption behaviors of gas phase bivalent mercury in Ca-based wet flue gas desulfurization slurry system.

Wang Y, Liu Y, Wu Z, Mo J, Cheng B.

J Hazard Mater. 2010 Nov 15;183(1-3):902-7. doi: 10.1016/j.jhazmat.2010.07.114. Epub 2010 Aug 6. Erratum in: J Hazard Mater. 2011 Jul 15;191(1-3):397. Wang, Yunjun [corrected to Wang, Yuejun].

PMID:
20739119
5.

Mercury oxidation promoted by a selective catalytic reduction catalyst under simulated Powder River Basin coal combustion conditions.

Lee CW, Serre SD, Zhao Y, Lee SJ, Hastings TW.

J Air Waste Manag Assoc. 2008 Apr;58(4):484-93.

PMID:
18422035
6.

Mercury re-emission in flue gas multipollutants simultaneous absorption system.

Liu Y, Wang Q, Mei R, Wang H, Weng X, Wu Z.

Environ Sci Technol. 2014 Dec 2;48(23):14025-30. doi: 10.1021/es503837w. Epub 2014 Nov 11.

PMID:
25360573
7.

The impact of wet flue gas desulfurization scrubbing on mercury emissions from coal-fired power stations.

Niksa S, Fujiwara N.

J Air Waste Manag Assoc. 2005 Jul;55(7):970-7.

PMID:
16111136
8.

CeO2-TiO2 catalysts for catalytic oxidation of elemental mercury in low-rank coal combustion flue gas.

Li H, Wu CY, Li Y, Zhang J.

Environ Sci Technol. 2011 Sep 1;45(17):7394-400. doi: 10.1021/es2007808. Epub 2011 Aug 2.

PMID:
21770402
9.

Investigation of selective catalytic reduction impact on mercury speciation under simulated NOx emission control conditions.

Lee CW, Srivastava RK, Ghorishi SB, Hastings TW, Stevens FM.

J Air Waste Manag Assoc. 2004 Dec;54(12):1560-6.

PMID:
15648394
10.

Measurement of mercury in flue gas based on an aluminum matrix sorbent.

Wang J, Xu W, Wang X, Wang W.

ScientificWorldJournal. 2011;11:2469-79. doi: 10.1100/2011/756264. Epub 2011 Dec 26.

11.

The fate and behavior of mercury in coal-fired power plants.

Meij R, Vredenbregt LH, te Winkel H.

J Air Waste Manag Assoc. 2002 Aug;52(8):912-7.

PMID:
12184689
12.

Influence of limestone characteristics on mercury re-emission in WFGD systems.

Ochoa-González R, Díaz-Somoano M, Martínez-Tarazona MR.

Environ Sci Technol. 2013 Mar 19;47(6):2974-81. doi: 10.1021/es304090e. Epub 2013 Mar 5.

PMID:
23439036
13.

Mercury speciation and emissions from coal combustion in Guiyang, Southwest China.

Tang S, Feng X, Qiu J, Yin G, Yang Z.

Environ Res. 2007 Oct;105(2):175-82. Epub 2007 May 22.

PMID:
17517388
14.

Oxidation and stabilization of elemental mercury from coal-fired flue gas by sulfur monobromide.

Qu Z, Yan N, Liu P, Guo Y, Jia J.

Environ Sci Technol. 2010 May 15;44(10):3889-94. doi: 10.1021/es903955s.

PMID:
20408537
15.

Control strategies of atmospheric mercury emissions from coal-fired power plants in China.

Tian H, Wang Y, Cheng K, Qu Y, Hao J, Xue Z, Chai F.

J Air Waste Manag Assoc. 2012 May;62(5):576-86.

PMID:
22696807
16.

A robust framework to predict mercury speciation in combustion flue gases.

Ticknor JL, Hsu-Kim H, Deshusses MA.

J Hazard Mater. 2014 Jan 15;264:380-5. doi: 10.1016/j.jhazmat.2013.10.052. Epub 2013 Oct 30.

PMID:
24316249
17.

Gas-phase mercury reduction to measure total mercury in the flue gas of a coal-fired boiler.

Meischen SJ, Van Pelt VJ, Zarate EA, Stephens EA Jr.

J Air Waste Manag Assoc. 2004 Jan;54(1):60-7.

PMID:
14871013
18.

Confounding effects of aqueous-phase impinger chemistry on apparent oxidation of mercury in flue gases.

Cauch B, Silcox GD, Lighty JS, Wendt JO, Fry A, Senior CL.

Environ Sci Technol. 2008 Apr 1;42(7):2594-9.

PMID:
18505002
19.

Role of flue gas components in mercury oxidation over TiO2 supported MnOx-CeO2 mixed-oxide at low temperature.

Li H, Wu CY, Li Y, Li L, Zhao Y, Zhang J.

J Hazard Mater. 2012 Dec;243:117-23. doi: 10.1016/j.jhazmat.2012.10.007. Epub 2012 Oct 13.

PMID:
23131500
20.

Issues related to solution chemistry in mercury sampling impingers.

Linak WP, Ryan JV, Ghorishi BS, Wendt JO.

J Air Waste Manag Assoc. 2001 May;51(5):688-98.

PMID:
11355456
Format
Items per page
Sort by

Send to:

Choose Destination

Supplemental Content

Write to the Help Desk