Format
Items per page
Sort by

Send to:

Choose Destination

Links from PubMed

Items: 1 to 20 of 82

1.

Universal distance-scaling of nonradiative energy transfer to graphene.

Gaudreau L, Tielrooij KJ, Prawiroatmodjo GE, Osmond J, García de Abajo FJ, Koppens FH.

Nano Lett. 2013 May 8;13(5):2030-5. doi: 10.1021/nl400176b. Epub 2013 Apr 15.

PMID:
23488979
2.

Distance dependence of the energy transfer rate from a single semiconductor nanostructure to graphene.

Federspiel F, Froehlicher G, Nasilowski M, Pedetti S, Mahmood A, Doudin B, Park S, Lee JO, Halley D, Dubertret B, Gilliot P, Berciaud S.

Nano Lett. 2015 Feb 11;15(2):1252-8. doi: 10.1021/nl5044192. Epub 2015 Jan 29.

PMID:
25607231
3.

A theoretical investigation of the influence of gold nanosphere size on the decay and energy transfer rates and efficiencies of quantum emitters.

Marocico CA, Zhang X, Bradley AL.

J Chem Phys. 2016 Jan 14;144(2):024108. doi: 10.1063/1.4939206.

PMID:
26772555
4.

Switching individual quantum dot emission through electrically controlling resonant energy transfer to graphene.

Lee J, Bao W, Ju L, Schuck PJ, Wang F, Weber-Bargioni A.

Nano Lett. 2014 Dec 10;14(12):7115-9. doi: 10.1021/nl503587z. Epub 2014 Nov 19.

PMID:
25383700
5.

Förster-Induced Energy Transfer in Functionalized Graphene.

Malic E, Appel H, Hofmann OT, Rubio A.

J Phys Chem C Nanomater Interfaces. 2014 May 1;118(17):9283-9289. Epub 2014 Apr 7.

6.

Energy transfer from individual semiconductor nanocrystals to graphene.

Chen Z, Berciaud S, Nuckolls C, Heinz TF, Brus LE.

ACS Nano. 2010 May 25;4(5):2964-8. doi: 10.1021/nn1005107.

PMID:
20402475
7.

Resonance energy transfer from a dye molecule to graphene.

Swathi RS, Sebastian KL.

J Chem Phys. 2008 Aug 7;129(5):054703. doi: 10.1063/1.2956498.

PMID:
18698917
8.

Long range resonance energy transfer from a dye molecule to graphene has (distance)(-4) dependence.

Swathi RS, Sebastian KL.

J Chem Phys. 2009 Feb 28;130(8):086101. doi: 10.1063/1.3077292.

PMID:
19256631
9.

Near-field effects and energy transfer in hybrid metal-oxide nanostructures.

Herr U, Kuerbanjiang B, Benel C, Papageorgiou G, Goncalves M, Boneberg J, Leiderer P, Ziemann P, Marek P, Hahn H.

Beilstein J Nanotechnol. 2013 May 14;4:306-17. doi: 10.3762/bjnano.4.34. Print 2013.

10.

Ultrafast energy transfer of one-dimensional excitons between carbon nanotubes: a femtosecond time-resolved luminescence study.

Koyama T, Miyata Y, Asaka K, Shinohara H, Saito Y, Nakamura A.

Phys Chem Chem Phys. 2012 Jan 21;14(3):1070-84. doi: 10.1039/c1cp22781e. Epub 2011 Nov 30.

PMID:
22127395
11.

Electric-field dependence of the effective dielectric constant in graphene.

Santos EJ, Kaxiras E.

Nano Lett. 2013 Mar 13;13(3):898-902. doi: 10.1021/nl303611v. Epub 2013 Feb 15.

PMID:
23339637
12.

Manipulation of the local density of photonic states to elucidate fluorescent protein emission rates.

Cesa Y, Blum C, van den Broek JM, Mosk AP, Vos WL, Subramaniam V.

Phys Chem Chem Phys. 2009 Apr 14;11(14):2525-31. doi: 10.1039/b817902f. Epub 2009 Feb 11.

PMID:
19325987
13.

Interaction of scanning probes with semiconductor nanocrystals; physical mechanism and basis for near-field optical imaging.

Ebenstein Y, Yoskovitz E, Costi R, Aharoni A, Banin U.

J Phys Chem A. 2006 Jul 13;110(27):8297-303.

PMID:
16821813
14.

Floral-clustered few-layer graphene nanosheet array as high performance field emitter.

Li L, Sun W, Tian S, Xia X, Li J, Gu C.

Nanoscale. 2012 Oct 21;4(20):6383-8.

PMID:
22951543
15.

Temperature-dependent resonance energy transfer from semiconductor quantum wells to graphene.

Yu YJ, Kim KS, Nam J, Kwon SR, Byun H, Lee K, Ryou JH, Dupuis RD, Kim J, Ahn G, Ryu S, Ryu MY, Kim JS.

Nano Lett. 2015 Feb 11;15(2):896-902. doi: 10.1021/nl503624j. Epub 2015 Jan 15.

PMID:
25562118
16.
17.

Efficient energy transfer from InGaN quantum wells to Ag nanoparticles.

Shu GW, Chiu CH, Huang LT, Lin TN, Yang CC, Wang JS, Yuan CT, Shen JL, Kuo HC, Lin CA, Chang WH, Wang HH, Yeh HI, Chan WH, Fan WC, Chou WC.

Phys Chem Chem Phys. 2013 Mar 14;15(10):3618-22. doi: 10.1039/c3cp43894e. Epub 2013 Feb 4.

PMID:
23381102
18.

Distance and orientation dependence of excitation energy transfer: from molecular systems to metal nanoparticles.

Saini S, Srinivas G, Bagchi B.

J Phys Chem B. 2009 Feb 19;113(7):1817-32. doi: 10.1021/jp806536w. Review.

PMID:
19128043
19.

Overcoming the black body limit in plasmonic and graphene near-field thermophotovoltaic systems.

Ilic O, Jablan M, Joannopoulos JD, Celanovic I, Soljacić M.

Opt Express. 2012 May 7;20(10):A366-84.

PMID:
22712094
20.

Wavelength, concentration, and distance dependence of nonradiative energy transfer to a plane of gold nanoparticles.

Zhang X, Marocico CA, Lunz M, Gerard VA, Gun'ko YK, Lesnyak V, Gaponik N, Susha AS, Rogach AL, Bradley AL.

ACS Nano. 2012 Oct 23;6(10):9283-90. doi: 10.1021/nn303756a. Epub 2012 Sep 20.

PMID:
22973978
Format
Items per page
Sort by

Send to:

Choose Destination

Supplemental Content

Write to the Help Desk