Display Settings:

Format
Items per page
Sort by

Send to:

Choose Destination

Results: 1 to 20 of 94

1.

Cu-ZSM-5: A biomimetic inorganic model for methane oxidation.

Vanelderen P, Hadt RG, Smeets PJ, Solomon EI, Schoonheydt RA, Sels BF.

J Catal. 2011 Dec 1;284(2):157-164. Epub 2011 Nov 14.

PMID:
23487537
[PubMed]
Free PMC Article
2.

Effects of ZSM-5 zeolite confinement on reaction intermediates during dioxygen activation by enclosed dicopper cations.

Yumura T, Takeuchi M, Kobayashi H, Kuroda Y.

Inorg Chem. 2009 Jan 19;48(2):508-17. doi: 10.1021/ic8010184.

PMID:
19093853
[PubMed]
3.

Selective oxidation of methane by the bis(mu-oxo)dicopper core stabilized on ZSM-5 and mordenite zeolites.

Groothaert MH, Smeets PJ, Sels BF, Jacobs PA, Schoonheydt RA.

J Am Chem Soc. 2005 Feb 9;127(5):1394-5.

PMID:
15686370
[PubMed - indexed for MEDLINE]
4.

Oxygen precursor to the reactive intermediate in methanol synthesis by Cu-ZSM-5.

Smeets PJ, Hadt RG, Woertink JS, Vanelderen P, Schoonheydt RA, Sels BF, Solomon EI.

J Am Chem Soc. 2010 Oct 27;132(42):14736-8. doi: 10.1021/ja106283u.

PMID:
20923156
[PubMed - indexed for MEDLINE]
Free PMC Article
5.

A [Cu2O]2+ core in Cu-ZSM-5, the active site in the oxidation of methane to methanol.

Woertink JS, Smeets PJ, Groothaert MH, Vance MA, Sels BF, Schoonheydt RA, Solomon EI.

Proc Natl Acad Sci U S A. 2009 Nov 10;106(45):18908-13. doi: 10.1073/pnas.0910461106. Epub 2009 Oct 28.

PMID:
19864626
[PubMed - indexed for MEDLINE]
Free PMC Article
6.

Conversion of methane to methanol at the mononuclear and dinuclear copper sites of particulate methane monooxygenase (pMMO): a DFT and QM/MM study.

Yoshizawa K, Shiota Y.

J Am Chem Soc. 2006 Aug 2;128(30):9873-81.

PMID:
16866545
[PubMed - indexed for MEDLINE]
7.

Bis(mu-oxo)dicopper in Cu-ZSM-5 and its role in the decomposition of NO: a combined in situ XAFS, UV-vis-near-IR, and kinetic study.

Groothaert MH, van Bokhoven JA, Battiston AA, Weckhuysen BM, Schoonheydt RA.

J Am Chem Soc. 2003 Jun 25;125(25):7629-40.

PMID:
12812505
[PubMed]
8.

Catalytic and mechanistic insights of the low-temperature selective oxidation of methane over Cu-promoted Fe-ZSM-5.

Hammond C, Jenkins RL, Dimitratos N, Lopez-Sanchez JA, ab Rahim MH, Forde MM, Thetford A, Murphy DM, Hagen H, Stangland EE, Moulijn JM, Taylor SH, Willock DJ, Hutchings GJ.

Chemistry. 2012 Dec 3;18(49):15735-45. doi: 10.1002/chem.201202802. Epub 2012 Nov 13.

PMID:
23150452
[PubMed]
9.

Oxidation mechanism of phenols by dicopper-dioxygen (Cu(2)/O(2)) complexes.

Osako T, Ohkubo K, Taki M, Tachi Y, Fukuzumi S, Itoh S.

J Am Chem Soc. 2003 Sep 10;125(36):11027-33.

PMID:
12952484
[PubMed - indexed for MEDLINE]
10.

Transition-metal ions in zeolites: coordination and activation of oxygen.

Smeets PJ, Woertink JS, Sels BF, Solomon EI, Schoonheydt RA.

Inorg Chem. 2010 Apr 19;49(8):3573-83. doi: 10.1021/ic901814f. Review.

PMID:
20380459
[PubMed - indexed for MEDLINE]
Free PMC Article
11.

Computational exploration of the mechanism of alcohol oxidation by dioxygen activated with biquinolyl-containing cu complexes.

Polestshuk PM, Magdesieva TV.

Inorg Chem. 2010 Apr 5;49(7):3370-86. doi: 10.1021/ic9024537.

PMID:
20184372
[PubMed - indexed for MEDLINE]
12.

Syntheses, characterization, and dioxygen reactivities of Cu(I) complexes with cis,cis-1,3,5-triaminocyclohexane derivatives: a Cu(III)2O2 intermediate exhibiting higher C-H activation.

Kajita Y, Arii H, Saito T, Saito Y, Nagatomo S, Kitagawa T, Funahashi Y, Ozawa T, Masuda H.

Inorg Chem. 2007 Apr 16;46(8):3322-35. Epub 2007 Mar 20.

PMID:
17371011
[PubMed - indexed for MEDLINE]
13.

Partial oxidation of ethane to oxygenates using Fe- and Cu-containing ZSM-5.

Forde MM, Armstrong RD, Hammond C, He Q, Jenkins RL, Kondrat SA, Dimitratos N, Lopez-Sanchez JA, Taylor SH, Willock D, Kiely CJ, Hutchings GJ.

J Am Chem Soc. 2013 Jul 31;135(30):11087-99. doi: 10.1021/ja403060n. Epub 2013 Jul 16.

PMID:
23802759
[PubMed]
14.

Reactivity of C1 surface species formed in methane activation on Zn-modified H-ZSM-5 zeolite.

Wu JF, Wang WD, Xu J, Deng F, Wang W.

Chemistry. 2010 Dec 17;16(47):14016-25. doi: 10.1002/chem.201002258.

PMID:
21038333
[PubMed]
15.

On the possibility of AgZSM-5 zeolite being a partial oxidation catalyst for methane.

Kuroda Y, Mori T, Sugiyama H, Uozumi Y, Ikeda K, Itadani A, Nagao M.

J Colloid Interface Sci. 2009 May 1;333(1):294-9. doi: 10.1016/j.jcis.2009.01.015. Epub 2009 Feb 10.

PMID:
19211111
[PubMed]
16.

Comparison of the reactivity of bis(mu-oxo)Cu(II)Cu(III) and Cu(III)Cu(III) species to methane.

Shiota Y, Yoshizawa K.

Inorg Chem. 2009 Feb 2;48(3):838-45. doi: 10.1021/ic8003933.

PMID:
19113938
[PubMed - indexed for MEDLINE]
17.

Selective catalytic reduction of nitrogen oxides from exhaust of lean burn engine over in-situ synthesized Cu-ZSM-5/cordierite.

Landong L, Jixin C, Shujuan Z, Fuxiang Z, Naijia G, Tianyou W, Shuliang L.

Environ Sci Technol. 2005 Apr 15;39(8):2841-7.

PMID:
15884384
[PubMed - indexed for MEDLINE]
18.

Investigation of solution chemistry effects on sorption behavior of Cu(II) on ZSM-5 zeolite.

Zhang L, Zhang H, Yu X.

Water Environ Res. 2011 Dec;83(12):2170-7.

PMID:
22368959
[PubMed - indexed for MEDLINE]
19.

Copper-dioxygen complex mediated C-H bond oxygenation: relevance for particulate methane monooxygenase (pMMO).

Himes RA, Karlin KD.

Curr Opin Chem Biol. 2009 Feb;13(1):119-31. doi: 10.1016/j.cbpa.2009.02.025. Epub 2009 Mar 13. Review.

PMID:
19286415
[PubMed - indexed for MEDLINE]
Free PMC Article
20.

[The surface adsorption and selective catalytic reaction of NO on Cu-ZSM-5 using in situ DRIFTS].

Zhang P, Wang LF, Chen YH.

Guang Pu Xue Yu Guang Pu Fen Xi. 2007 Jun;27(6):1102-5. Chinese.

PMID:
17763767
[PubMed]

Display Settings:

Format
Items per page
Sort by

Send to:

Choose Destination

Supplemental Content

Write to the Help Desk