Format
Sort by

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 135

1.

Chlamydomonas reinhardtii thermal tolerance enhancement mediated by a mutualistic interaction with vitamin B12-producing bacteria.

Xie B, Bishop S, Stessman D, Wright D, Spalding MH, Halverson LJ.

ISME J. 2013 Aug;7(8):1544-55. doi: 10.1038/ismej.2013.43. Epub 2013 Mar 14.

2.

Mutualistic interactions between vitamin B12 -dependent algae and heterotrophic bacteria exhibit regulation.

Kazamia E, Czesnick H, Nguyen TT, Croft MT, Sherwood E, Sasso S, Hodson SJ, Warren MJ, Smith AG.

Environ Microbiol. 2012 Jun;14(6):1466-76. doi: 10.1111/j.1462-2920.2012.02733.x. Epub 2012 Mar 29.

PMID:
22463064
3.

Insights into the evolution of vitamin B12 auxotrophy from sequenced algal genomes.

Helliwell KE, Wheeler GL, Leptos KC, Goldstein RE, Smith AG.

Mol Biol Evol. 2011 Oct;28(10):2921-33. doi: 10.1093/molbev/msr124. Epub 2011 May 6.

4.

Metabolic adaptation of Ralstonia solanacearum during plant infection: a methionine biosynthesis case study.

Plener L, Boistard P, González A, Boucher C, Genin S.

PLoS One. 2012;7(5):e36877. doi: 10.1371/journal.pone.0036877. Epub 2012 May 16.

5.

Unraveling vitamin B12-responsive gene regulation in algae.

Helliwell KE, Scaife MA, Sasso S, Araujo AP, Purton S, Smith AG.

Plant Physiol. 2014 May;165(1):388-97. doi: 10.1104/pp.113.234369. Epub 2014 Mar 13.

6.

Sinorhizobium meliloti requires a cobalamin-dependent ribonucleotide reductase for symbiosis with its plant host.

Taga ME, Walker GC.

Mol Plant Microbe Interact. 2010 Dec;23(12):1643-54. doi: 10.1094/MPMI-07-10-0151.

7.

Algae acquire vitamin B12 through a symbiotic relationship with bacteria.

Croft MT, Lawrence AD, Raux-Deery E, Warren MJ, Smith AG.

Nature. 2005 Nov 3;438(7064):90-3.

PMID:
16267554
8.

Fundamental shift in vitamin B12 eco-physiology of a model alga demonstrated by experimental evolution.

Helliwell KE, Collins S, Kazamia E, Purton S, Wheeler GL, Smith AG.

ISME J. 2015 Jun;9(6):1446-55. doi: 10.1038/ismej.2014.230. Epub 2014 Dec 19.

9.

Comparison of cobalamin-independent and cobalamin-dependent methionine synthases from Escherichia coli: two solutions to the same chemical problem.

González JC, Banerjee RV, Huang S, Sumner JS, Matthews RG.

Biochemistry. 1992 Jul 7;31(26):6045-56.

PMID:
1339288
10.
12.

A synthetic module for the metH gene permits facile mutagenesis of the cobalamin-binding region of Escherichia coli methionine synthase: initial characterization of seven mutant proteins.

Amaratunga M, Fluhr K, Jarrett JT, Drennan CL, Ludwig ML, Matthews RG, Scholten JD.

Biochemistry. 1996 Feb 20;35(7):2453-63.

PMID:
8652589
13.

Chlamydomonas reinhardtii secretes compounds that mimic bacterial signals and interfere with quorum sensing regulation in bacteria.

Teplitski M, Chen H, Rajamani S, Gao M, Merighi M, Sayre RT, Robinson JB, Rolfe BG, Bauer WD.

Plant Physiol. 2004 Jan;134(1):137-46. Epub 2003 Dec 11.

14.

Vitamin B12 metabolism in a photosynthesizing green alga, Chlamydomonas reinhardtii.

Watanabe F, Nakano Y, Tamura Y, Yamanaka H.

Biochim Biophys Acta. 1991 Sep 2;1075(1):36-41.

PMID:
1892864
15.
17.

A common variant in methionine synthase reductase combined with low cobalamin (vitamin B12) increases risk for spina bifida.

Wilson A, Platt R, Wu Q, Leclerc D, Christensen B, Yang H, Gravel RA, Rozen R.

Mol Genet Metab. 1999 Aug;67(4):317-23.

PMID:
10444342
18.
20.

Occurrence of pseudovitamin B12 and its possible function as the cofactor of cobalamin-dependent methionine synthase in a cyanobacterium Synechocystis sp. PCC6803.

Tanioka Y, Yabuta Y, Yamaji R, Shigeoka S, Nakano Y, Watanabe F, Inui H.

J Nutr Sci Vitaminol (Tokyo). 2009 Dec;55(6):518-21.

Items per page

Supplemental Content

Write to the Help Desk