Format
Items per page
Sort by

Send to:

Choose Destination

Links from PubMed

Items: 1 to 20 of 249

1.

Emergent properties and trends of a new class of carbon nanocomposites: graphene nanoribbons encapsulated in a carbon nanotube.

Kou L, Tang C, Wehling T, Frauenheim T, Chen C.

Nanoscale. 2013 Apr 21;5(8):3306-14. doi: 10.1039/c3nr33941f. Epub 2013 Mar 6.

PMID:
23463363
2.

Intrinsic Charge Separation and Tunable Electronic Band Gap of Armchair Graphene Nanoribbons Encapsulated in a Double-Walled Carbon Nanotube.

Kou L, Tang C, Frauenheim T, Chen C.

J Phys Chem Lett. 2013 Apr 18;4(8):1328-33. doi: 10.1021/jz400037j. Epub 2013 Apr 8.

PMID:
26282148
3.

Chiral graphene nanoribbon inside a carbon nanotube: ab initio study.

Lebedeva IV, Popov AM, Knizhnik AA, Khlobystov AN, Potapkin BV.

Nanoscale. 2012 Aug 7;4(15):4522-9. doi: 10.1039/c2nr30144j. Epub 2012 Jun 13.

PMID:
22696165
4.

Accurate prediction of the electronic properties of low-dimensional graphene derivatives using a screened hybrid density functional.

Barone V, Hod O, Peralta JE, Scuseria GE.

Acc Chem Res. 2011 Apr 19;44(4):269-79. doi: 10.1021/ar100137c. Epub 2011 Mar 9.

PMID:
21388164
5.

From zigzag to armchair: the energetic stability, electronic and magnetic properties of chiral graphene nanoribbons with hydrogen-terminated edges.

Sun L, Wei P, Wei J, Sanvito S, Hou S.

J Phys Condens Matter. 2011 Oct 26;23(42):425301. doi: 10.1088/0953-8984/23/42/425301. Epub 2011 Oct 3.

PMID:
21969127
6.

Electronic property modification of single-walled carbon nanotubes by encapsulation of sulfur-terminated graphene nanoribbons.

Pollack A, Alnemrat S, Chamberlain TW, Khlobystov AN, Hooper JP, Osswald S.

Small. 2014 Dec 29;10(24):5077-86. doi: 10.1002/smll.201401034. Epub 2014 Aug 13.

PMID:
25123503
7.

A guide to the design of electronic properties of graphene nanoribbons.

Yazyev OV.

Acc Chem Res. 2013 Oct 15;46(10):2319-28.

PMID:
23282074
8.

Size, structure, and helical twist of graphene nanoribbons controlled by confinement in carbon nanotubes.

Chamberlain TW, Biskupek J, Rance GA, Chuvilin A, Alexander TJ, Bichoutskaia E, Kaiser U, Khlobystov AN.

ACS Nano. 2012 May 22;6(5):3943-53. doi: 10.1021/nn300137j. Epub 2012 Apr 18.

PMID:
22483078
9.

Electronic and magnetic properties and structural stability of BeO sheet and nanoribbons.

Wu W, Lu P, Zhang Z, Guo W.

ACS Appl Mater Interfaces. 2011 Dec;3(12):4787-95. doi: 10.1021/am201271j. Epub 2011 Nov 11.

PMID:
22039765
10.

Energetics and electronic structure of encapsulated graphene nanoribbons in carbon nanotube.

Mandal B, Sarkar S, Sarkar P.

J Phys Chem A. 2013 Sep 12;117(36):8568-75. doi: 10.1021/jp4025359. Epub 2013 May 28.

PMID:
23675973
11.

Electronic structure of atomic Ti chains on semiconducting graphene nanoribbons: a first-principles study.

Kan EJ, Xiang HJ, Yang J, Hou JG.

J Chem Phys. 2007 Oct 28;127(16):164706.

PMID:
17979370
12.

Tuning the band gap of graphene nanoribbons synthesized from molecular precursors.

Chen YC, de Oteyza DG, Pedramrazi Z, Chen C, Fischer FR, Crommie MF.

ACS Nano. 2013 Jul 23;7(7):6123-8. doi: 10.1021/nn401948e. Epub 2013 Jun 12.

PMID:
23746141
13.

Ultra-narrow metallic armchair graphene nanoribbons.

Kimouche A, Ervasti MM, Drost R, Halonen S, Harju A, Joensuu PM, Sainio J, Liljeroth P.

Nat Commun. 2015 Dec 14;6:10177. doi: 10.1038/ncomms10177.

14.

Hybrid nanotube-graphene junctions: spin degeneracy breaking and tunable electronic structure.

Qu ZB, Gu L, Li M, Shi G, Zhuang GL.

Phys Chem Chem Phys. 2013 Dec 14;15(46):20281-7. doi: 10.1039/c3cp53295j.

PMID:
24166658
15.

Electronic transport through zigzag/armchair graphene nanoribbon heterojunctions.

Li XF, Wang LL, Chen KQ, Luo Y.

J Phys Condens Matter. 2012 Mar 7;24(9):095801. doi: 10.1088/0953-8984/24/9/095801. Epub 2012 Feb 9.

PMID:
22317831
16.

Hierarchical composites of polyaniline-graphene nanoribbons-carbon nanotubes as electrode materials in all-solid-state supercapacitors.

Liu M, Miao YE, Zhang C, Tjiu WW, Yang Z, Peng H, Liu T.

Nanoscale. 2013 Aug 21;5(16):7312-20. doi: 10.1039/c3nr01442h.

PMID:
23821299
17.

Transforming graphene nanoribbons into nanotubes by use of point defects.

Sgouros A, Sigalas MM, Papagelis K, Kalosakas G.

J Phys Condens Matter. 2014 Mar 26;26(12):125301. doi: 10.1088/0953-8984/26/12/125301. Epub 2014 Mar 4.

PMID:
24594675
18.

Electronic Structure of Semiconducting and Metallic Tubes in TiO2/Carbon Nanotube Heterojunctions: Density Functional Theory Calculations.

Long R.

J Phys Chem Lett. 2013 Apr 18;4(8):1340-6. doi: 10.1021/jz400589v. Epub 2013 Apr 9.

PMID:
26282150
19.
20.

Anisotropic conductive films based on highly aligned polyimide fibers containing hybrid materials of graphene nanoribbons and carbon nanotubes.

Liu M, Du Y, Miao YE, Ding Q, He S, Tjiu WW, Pan J, Liu T.

Nanoscale. 2015 Jan 21;7(3):1037-46. doi: 10.1039/c4nr06117a.

PMID:
25474256
Format
Items per page
Sort by

Send to:

Choose Destination

Supplemental Content

Write to the Help Desk