Format
Items per page
Sort by

Send to:

Choose Destination

Results: 1 to 20 of 105

Similar articles for PubMed (Select 23455955)

1.

Comparison of global responses to mild deficiency and excess copper levels in Arabidopsis seedlings.

Andrés-Colás N, Perea-García A, Mayo de Andrés S, Garcia-Molina A, Dorcey E, Rodríguez-Navarro S, Pérez-Amador MA, Puig S, Peñarrubia L.

Metallomics. 2013 Sep;5(9):1234-46. doi: 10.1039/c3mt00025g.

PMID:
23455955
2.

The CTR/COPT-dependent copper uptake and SPL7-dependent copper deficiency responses are required for basal cadmium tolerance in A. thaliana.

Gayomba SR, Jung HI, Yan J, Danku J, Rutzke MA, Bernal M, Krämer U, Kochian LV, Salt DE, Vatamaniuk OK.

Metallomics. 2013 Sep;5(9):1262-75. doi: 10.1039/c3mt00111c.

PMID:
23835944
3.

Transcriptome sequencing identifies SPL7-regulated copper acquisition genes FRO4/FRO5 and the copper dependence of iron homeostasis in Arabidopsis.

Bernal M, Casero D, Singh V, Wilson GT, Grande A, Yang H, Dodani SC, Pellegrini M, Huijser P, Connolly EL, Merchant SS, Krämer U.

Plant Cell. 2012 Feb;24(2):738-61. doi: 10.1105/tpc.111.090431. Epub 2012 Feb 28.

4.

SQUAMOSA Promoter Binding Protein-Like7 Is a Central Regulator for Copper Homeostasis in Arabidopsis.

Yamasaki H, Hayashi M, Fukazawa M, Kobayashi Y, Shikanai T.

Plant Cell. 2009 Jan;21(1):347-61. doi: 10.1105/tpc.108.060137. Epub 2009 Jan 2.

5.

Contribution of plastocyanin isoforms to photosynthesis and copper homeostasis in Arabidopsis thaliana grown at different copper regimes.

Abdel-Ghany SE.

Planta. 2009 Mar;229(4):767-79. doi: 10.1007/s00425-008-0869-z. Epub 2008 Dec 16.

PMID:
19084994
6.
7.

Rosette iron deficiency transcript and microRNA profiling reveals links between copper and iron homeostasis in Arabidopsis thaliana.

Waters BM, McInturf SA, Stein RJ.

J Exp Bot. 2012 Oct;63(16):5903-18. doi: 10.1093/jxb/ers239. Epub 2012 Sep 7.

8.

In planta analysis of a cis-regulatory cytokinin response motif in Arabidopsis and identification of a novel enhancer sequence.

Ramireddy E, Brenner WG, Pfeifer A, Heyl A, Schmülling T.

Plant Cell Physiol. 2013 Jul;54(7):1079-92. doi: 10.1093/pcp/pct060. Epub 2013 Apr 24.

PMID:
23620480
9.

Use of natural variation reveals core genes in the transcriptome of iron-deficient Arabidopsis thaliana roots.

Stein RJ, Waters BM.

J Exp Bot. 2012 Jan;63(2):1039-55. doi: 10.1093/jxb/err343. Epub 2011 Oct 30.

10.

Copper chaperone antioxidant protein1 is essential for copper homeostasis.

Shin LJ, Lo JC, Yeh KC.

Plant Physiol. 2012 Jul;159(3):1099-110. doi: 10.1104/pp.112.195974. Epub 2012 May 3.

11.

Isolation and functional characterization of CE1 binding proteins.

Lee SJ, Park JH, Lee MH, Yu JH, Kim SY.

BMC Plant Biol. 2010 Dec 16;10:277. doi: 10.1186/1471-2229-10-277.

12.

The essential basic helix-loop-helix protein FIT1 is required for the iron deficiency response.

Colangelo EP, Guerinot ML.

Plant Cell. 2004 Dec;16(12):3400-12. Epub 2004 Nov 11.

13.

Overexpression of Arabidopsis ATX1 retards plant growth under severe copper deficiency.

Shin LJ, Yeh KC.

Plant Signal Behav. 2012 Sep 1;7(9):1082-3. doi: 10.4161/psb.21147. Epub 2012 Aug 17.

14.

COPT6 is a plasma membrane transporter that functions in copper homeostasis in Arabidopsis and is a novel target of SQUAMOSA promoter-binding protein-like 7.

Jung HI, Gayomba SR, Rutzke MA, Craft E, Kochian LV, Vatamaniuk OK.

J Biol Chem. 2012 Sep 28;287(40):33252-67. Epub 2012 Aug 3.

16.

Members of a small family of nodulin-like genes are regulated under iron deficiency in roots of Arabidopsis thaliana.

Gollhofer J, Schläwicke C, Jungnick N, Schmidt W, Buckhout TJ.

Plant Physiol Biochem. 2011 May;49(5):557-64. doi: 10.1016/j.plaphy.2011.02.011. Epub 2011 Feb 24.

PMID:
21411332
17.

SQUAMOSA promoter binding protein-like7 regulated microRNA408 is required for vegetative development in Arabidopsis.

Zhang H, Li L.

Plant J. 2013 Apr;74(1):98-109. doi: 10.1111/tpj.12107. Epub 2013 Feb 28.

PMID:
23289771
18.

The Arabidopsis Mediator subunit MED16 regulates iron homeostasis by associating with EIN3/EIL1 through subunit MED25.

Yang Y, Ou B, Zhang J, Si W, Gu H, Qin G, Qu LJ.

Plant J. 2014 Mar;77(6):838-51. doi: 10.1111/tpj.12440. Epub 2014 Feb 24.

PMID:
24456400
19.

Yeast copper-dependent transcription factor ACE1 enhanced copper stress tolerance in Arabidopsis.

Xu J, Tian YS, Peng RH, Xiong AS, Zhu B, Jin XF, Gao JJ, Hou XL, Yao QH.

BMB Rep. 2009 Nov 30;42(11):752-7.

20.

Deregulated copper transport affects Arabidopsis development especially in the absence of environmental cycles.

Andrés-Colás N, Perea-García A, Puig S, Peñarrubia L.

Plant Physiol. 2010 May;153(1):170-84. doi: 10.1104/pp.110.153676. Epub 2010 Mar 24.

Format
Items per page
Sort by

Send to:

Choose Destination

Supplemental Content

Write to the Help Desk