Format
Items per page
Sort by

Send to:

Choose Destination

Links from PubMed

Items: 1 to 20 of 115

1.

Fusion of an oligopeptide to the N terminus of an alkaline α-amylase from Alkalimonas amylolytica simultaneously improves the enzyme's catalytic efficiency, thermal stability, and resistance to oxidation.

Yang H, Lu X, Liu L, Li J, Shin HD, Chen RR, Du G, Chen J.

Appl Environ Microbiol. 2013 May;79(9):3049-58. doi: 10.1128/AEM.03785-12. Epub 2013 Mar 1.

2.
3.

Integrating terminal truncation and oligopeptide fusion for a novel protein engineering strategy to improve specific activity and catalytic efficiency: alkaline α-amylase as a case study.

Yang H, Liu L, Shin HD, Chen RR, Li J, Du G, Chen J.

Appl Environ Microbiol. 2013 Oct;79(20):6429-38. doi: 10.1128/AEM.02087-13. Epub 2013 Aug 16.

4.

Structure-based engineering of methionine residues in the catalytic cores of alkaline amylase from Alkalimonas amylolytica for improved oxidative stability.

Yang H, Liu L, Wang M, Li J, Wang NS, Du G, Chen J.

Appl Environ Microbiol. 2012 Nov;78(21):7519-26. doi: 10.1128/AEM.01307-12. Epub 2012 Aug 3.

6.

Structure-based engineering of alkaline α-amylase from alkaliphilic Alkalimonas amylolytica for improved thermostability.

Deng Z, Yang H, Li J, Shin HD, Du G, Liu L, Chen J.

Appl Microbiol Biotechnol. 2014 May;98(9):3997-4007. doi: 10.1007/s00253-013-5375-y. Epub 2013 Nov 19.

PMID:
24247992
7.

In silico rational design and systems engineering of disulfide bridges in the catalytic domain of an alkaline α-amylase from Alkalimonas amylolytica to improve thermostability.

Liu L, Deng Z, Yang H, Li J, Shin HD, Chen RR, Du G, Chen J.

Appl Environ Microbiol. 2014 Feb;80(3):798-807. doi: 10.1128/AEM.03045-13. Epub 2013 Nov 8.

8.

Structure-based rational design and introduction of arginines on the surface of an alkaline α-amylase from Alkalimonas amylolytica for improved thermostability.

Deng Z, Yang H, Shin HD, Li J, Liu L.

Appl Microbiol Biotechnol. 2014 Nov;98(21):8937-45. doi: 10.1007/s00253-014-5790-8. Epub 2014 May 10.

PMID:
24816623
9.

Comparative analysis of heterologous expression, biochemical characterization optimal production of an alkaline α-amylase from alkaliphilic Alkalimonas amylolytica in Escherichia coli and Pichia pastoris.

Yang H, Liu L, Shin HD, Chen RR, Li J, Du G, Chen J.

Biotechnol Prog. 2013 Jan-Feb;29(1):39-47. doi: 10.1002/btpr.1657. Epub 2012 Dec 4.

PMID:
23125186
10.

Gene cloning and characterization of a novel alpha-amylase from alkaliphilic Alkalimonas amylolytica.

Wang N, Zhang Y, Wang Q, Liu J, Wang H, Xue Y, Ma Y.

Biotechnol J. 2006 Nov;1(11):1258-65.

PMID:
17068753
11.

Thermal stability and activity improvements of a Ca-independent α-amylase from Bacillus subtilis CN7 by C-terminal truncation and hexahistidine-tag fusion.

Wang C, Wang Q, Liao S, He B, Huang R.

Biotechnol Appl Biochem. 2014 Mar-Apr;61(2):93-100. doi: 10.1002/bab.1150. Epub 2014 Feb 26.

PMID:
24033784
12.

Improvement of thermal stability of a mutagenised α-amylase by manipulation of the calcium-binding site.

Ghollasi M, Ghanbari-Safari M, Khajeh K.

Enzyme Microb Technol. 2013 Dec 10;53(6-7):406-13. doi: 10.1016/j.enzmictec.2013.09.001. Epub 2013 Sep 12.

PMID:
24315644
13.

Structure-based engineering of histidine residues in the catalytic domain of α-amylase from Bacillus subtilis for improved protein stability and catalytic efficiency under acidic conditions.

Yang H, Liu L, Shin HD, Chen RR, Li J, Du G, Chen J.

J Biotechnol. 2013 Mar 10;164(1):59-66. doi: 10.1016/j.jbiotec.2012.12.007. Epub 2012 Dec 20.

PMID:
23262127
14.
15.

Engineering of a Bacillus alpha-amylase with improved thermostability and calcium independency.

Ghollasi M, Khajeh K, Naderi-Manesh H, Ghasemi A.

Appl Biochem Biotechnol. 2010 Sep;162(2):444-59. doi: 10.1007/s12010-009-8879-2. Epub 2010 Feb 23.

PMID:
20177823
17.

Biochemical and molecular characterization of a detergent-stable serine alkaline protease from Bacillus pumilus CBS with high catalytic efficiency.

Jaouadi B, Ellouz-Chaabouni S, Rhimi M, Bejar S.

Biochimie. 2008 Sep;90(9):1291-305. doi: 10.1016/j.biochi.2008.03.004. Epub 2008 Mar 20.

PMID:
18397761
18.

Probing structural determinants specifying high thermostability in Bacillus licheniformis alpha-amylase.

Declerck N, Machius M, Wiegand G, Huber R, Gaillardin C.

J Mol Biol. 2000 Aug 25;301(4):1041-57.

PMID:
10966804
19.

Identification and functional characterization of an α-amylase with broad temperature and pH stability from Paenibacillus sp.

Rajesh T, Kim YH, Choi YK, Jeon JM, Kim HJ, Park SH, Park HY, Choi KY, Kim H, Kim HJ, Lee SH, Yang YH.

Appl Biochem Biotechnol. 2013 May;170(2):359-69. doi: 10.1007/s12010-013-0197-z. Epub 2013 Mar 26.

PMID:
23526111
20.

Engineering of a truncated alpha-amylase of Bacillus sp. strain TS-23 for the simultaneous improvement of thermal and oxidative stabilities.

Chi MC, Chen YH, Wu TJ, Lo HF, Lin LL.

J Biosci Bioeng. 2010 Jun;109(6):531-8. doi: 10.1016/j.jbiosc.2009.11.012. Epub 2009 Dec 16.

PMID:
20471589
Format
Items per page
Sort by

Send to:

Choose Destination

Supplemental Content

Write to the Help Desk