Format
Items per page
Sort by

Send to:

Choose Destination

Results: 1 to 20 of 105

Related Citations for PubMed (Select 23452507)

1.

Improved orange and red Ca²± indicators and photophysical considerations for optogenetic applications.

Wu J, Liu L, Matsuda T, Zhao Y, Rebane A, Drobizhev M, Chang YF, Araki S, Arai Y, March K, Hughes TE, Sagou K, Miyata T, Nagai T, Li WH, Campbell RE.

ACS Chem Neurosci. 2013 Jun 19;4(6):963-72. doi: 10.1021/cn400012b. Epub 2013 Mar 19.

2.

Genetically encoded calcium indicators for multi-color neural activity imaging and combination with optogenetics.

Akerboom J, Carreras Calderón N, Tian L, Wabnig S, Prigge M, Tolö J, Gordus A, Orger MB, Severi KE, Macklin JJ, Patel R, Pulver SR, Wardill TJ, Fischer E, Schüler C, Chen TW, Sarkisyan KS, Marvin JS, Bargmann CI, Kim DS, Kügler S, Lagnado L, Hegemann P, Gottschalk A, Schreiter ER, Looger LL.

Front Mol Neurosci. 2013 Mar 4;6:2. doi: 10.3389/fnmol.2013.00002. eCollection 2013.

3.

Opto-current-clamp actuation of cortical neurons using a strategically designed channelrhodopsin.

Wen L, Wang H, Tanimoto S, Egawa R, Matsuzaka Y, Mushiake H, Ishizuka T, Yawo H.

PLoS One. 2010 Sep 23;5(9):e12893. doi: 10.1371/journal.pone.0012893.

4.

New red-fluorescent calcium indicators for optogenetics, photoactivation and multi-color imaging.

Oheim M, van 't Hoff M, Feltz A, Zamaleeva A, Mallet JM, Collot M.

Biochim Biophys Acta. 2014 Oct;1843(10):2284-306. doi: 10.1016/j.bbamcr.2014.03.010. Epub 2014 Mar 27. Review.

PMID:
24681159
5.

Red fluorescent genetically encoded Ca2+ indicators for use in mitochondria and endoplasmic reticulum.

Wu J, Prole DL, Shen Y, Lin Z, Gnanasekaran A, Liu Y, Chen L, Zhou H, Chen SR, Usachev YM, Taylor CW, Campbell RE.

Biochem J. 2014 Nov 15;464(1):13-22. doi: 10.1042/BJ20140931.

6.

An expanded palette of genetically encoded Ca²⁺ indicators.

Zhao Y, Araki S, Wu J, Teramoto T, Chang YF, Nakano M, Abdelfattah AS, Fujiwara M, Ishihara T, Nagai T, Campbell RE.

Science. 2011 Sep 30;333(6051):1888-91. doi: 10.1126/science.1208592. Epub 2011 Sep 8.

7.

An improved genetically encoded red fluorescent Ca2+ indicator for detecting optically evoked action potentials.

Ohkura M, Sasaki T, Kobayashi C, Ikegaya Y, Nakai J.

PLoS One. 2012;7(7):e39933. doi: 10.1371/journal.pone.0039933. Epub 2012 Jul 10.

8.

Color-tuned channelrhodopsins for multiwavelength optogenetics.

Prigge M, Schneider F, Tsunoda SP, Shilyansky C, Wietek J, Deisseroth K, Hegemann P.

J Biol Chem. 2012 Sep 14;287(38):31804-12. doi: 10.1074/jbc.M112.391185. Epub 2012 Jul 27.

9.

ReaChR: a red-shifted variant of channelrhodopsin enables deep transcranial optogenetic excitation.

Lin JY, Knutsen PM, Muller A, Kleinfeld D, Tsien RY.

Nat Neurosci. 2013 Oct;16(10):1499-508. doi: 10.1038/nn.3502. Epub 2013 Sep 1.

10.

Circular permutated red fluorescent proteins and calcium ion indicators based on mCherry.

Carlson HJ, Campbell RE.

Protein Eng Des Sel. 2013 Dec;26(12):763-72. doi: 10.1093/protein/gzt052. Epub 2013 Oct 22.

11.

Targeted expression of a chimeric channelrhodopsin in zebrafish under regulation of Gal4-UAS system.

Umeda K, Shoji W, Sakai S, Muto A, Kawakami K, Ishizuka T, Yawo H.

Neurosci Res. 2013 Jan;75(1):69-75. doi: 10.1016/j.neures.2012.08.010. Epub 2012 Oct 5.

PMID:
23044184
12.

Real-time electrochemical recording of dopamine release under optogenetic stimulation.

Chiu WT, Lin CM, Tsai TC, Wu CW, Tsai CL, Lin SH, Chen JJ.

PLoS One. 2014 Feb 20;9(2):e89293. doi: 10.1371/journal.pone.0089293. eCollection 2014.

13.

Light-emitting channelrhodopsins for combined optogenetic and chemical-genetic control of neurons.

Berglund K, Birkner E, Augustine GJ, Hochgeschwender U.

PLoS One. 2013;8(3):e59759. doi: 10.1371/journal.pone.0059759. Epub 2013 Mar 27.

14.

Computational optogenetics: empirically-derived voltage- and light-sensitive channelrhodopsin-2 model.

Williams JC, Xu J, Lu Z, Klimas A, Chen X, Ambrosi CM, Cohen IS, Entcheva E.

PLoS Comput Biol. 2013;9(9):e1003220. doi: 10.1371/journal.pcbi.1003220. Epub 2013 Sep 12.

15.

Optogenetic reporters.

Alford SC, Wu J, Zhao Y, Campbell RE, Knöpfel T.

Biol Cell. 2013 Jan;105(1):14-29. doi: 10.1111/boc.201200054. Epub 2012 Dec 20.

PMID:
23126299
16.

Modulation of medial prefrontal cortical activity using in vivo recordings and optogenetics.

Ji G, Neugebauer V.

Mol Brain. 2012 Oct 8;5:36. doi: 10.1186/1756-6606-5-36.

17.

Strategies for expanding the operational range of channelrhodopsin in optogenetic vision.

Mutter M, Münch TA.

PLoS One. 2013 Nov 27;8(11):e81278. doi: 10.1371/journal.pone.0081278. eCollection 2013.

18.

Optogenetic probing and manipulation of the calyx-type presynaptic terminal in the embryonic chick ciliary ganglion.

Egawa R, Hososhima S, Hou X, Katow H, Ishizuka T, Nakamura H, Yawo H.

PLoS One. 2013;8(3):e59179. doi: 10.1371/journal.pone.0059179. Epub 2013 Mar 21.

19.

Parallel and patterned optogenetic manipulation of neurons in the brain slice using a DMD-based projector.

Sakai S, Ueno K, Ishizuka T, Yawo H.

Neurosci Res. 2013 Jan;75(1):59-64. doi: 10.1016/j.neures.2012.03.009. Epub 2012 Mar 24.

PMID:
22469653
20.

Photocycles of channelrhodopsin-2.

Nikolic K, Grossman N, Grubb MS, Burrone J, Toumazou C, Degenaar P.

Photochem Photobiol. 2009 Jan-Feb;85(1):400-11. doi: 10.1111/j.1751-1097.2008.00460.x.

PMID:
19161406
Format
Items per page
Sort by

Send to:

Choose Destination

Supplemental Content

Write to the Help Desk