Format
Sort by

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 96

1.

Voluntary movement controlled by the surface EMG signal for tissue-engineered skeletal muscle on a gripping tool.

Kabumoto K, Hoshino T, Akiyama Y, Morishima K.

Tissue Eng Part A. 2013 Aug;19(15-16):1695-703. doi: 10.1089/ten.TEA.2012.0421. Epub 2013 Jun 11.

2.

Enhanced contractile force generation by artificial skeletal muscle tissues using IGF-I gene-engineered myoblast cells.

Sato M, Ito A, Kawabe Y, Nagamori E, Kamihira M.

J Biosci Bioeng. 2011 Sep;112(3):273-8. doi: 10.1016/j.jbiosc.2011.05.007. Epub 2011 Jun 8.

PMID:
21646045
3.

Induction of functional tissue-engineered skeletal muscle constructs by defined electrical stimulation.

Ito A, Yamamoto Y, Sato M, Ikeda K, Yamamoto M, Fujita H, Nagamori E, Kawabe Y, Kamihira M.

Sci Rep. 2014 Apr 24;4:4781. doi: 10.1038/srep04781.

4.

Tissue-engineered axially vascularized contractile skeletal muscle.

Borschel GH, Dow DE, Dennis RG, Brown DL.

Plast Reconstr Surg. 2006 Jun;117(7):2235-42.

PMID:
16772923
5.

Engineered contractile skeletal muscle tissue on a microgrooved methacrylated gelatin substrate.

Hosseini V, Ahadian S, Ostrovidov S, Camci-Unal G, Chen S, Kaji H, Ramalingam M, Khademhosseini A.

Tissue Eng Part A. 2012 Dec;18(23-24):2453-65. doi: 10.1089/ten.TEA.2012.0181.

6.

Engineering skeletal muscle tissues from murine myoblast progenitor cells and application of electrical stimulation.

van der Schaft DW, van Spreeuwel AC, Boonen KJ, Langelaan ML, Bouten CV, Baaijens FP.

J Vis Exp. 2013 Mar 19;(73):e4267. doi: 10.3791/4267.

7.

Control of myotube contraction using electrical pulse stimulation for bio-actuator.

Yamasaki K, Hayashi H, Nishiyama K, Kobayashi H, Uto S, Kondo H, Hashimoto S, Fujisato T.

J Artif Organs. 2009;12(2):131-7. doi: 10.1007/s10047-009-0457-4. Epub 2009 Jun 18.

PMID:
19536631
8.

Collagen matrices from sponge to nano: new perspectives for tissue engineering of skeletal muscle.

Beier JP, Klumpp D, Rudisile M, Dersch R, Wendorff JH, Bleiziffer O, Arkudas A, Polykandriotis E, Horch RE, Kneser U.

BMC Biotechnol. 2009 Apr 15;9:34. doi: 10.1186/1472-6750-9-34.

9.

Neurotization improves contractile forces of tissue-engineered skeletal muscle.

Dhawan V, Lytle IF, Dow DE, Huang YC, Brown DL.

Tissue Eng. 2007 Nov;13(11):2813-21.

PMID:
17822360
10.

Optimizing the structure and contractility of engineered skeletal muscle thin films.

Sun Y, Duffy R, Lee A, Feinberg AW.

Acta Biomater. 2013 Aug;9(8):7885-94. doi: 10.1016/j.actbio.2013.04.036. Epub 2013 Apr 28.

PMID:
23632372
11.

Homologous muscle acellular matrix seeded with autologous myoblasts as a tissue-engineering approach to abdominal wall-defect repair.

Conconi MT, De Coppi P, Bellini S, Zara G, Sabatti M, Marzaro M, Zanon GF, Gamba PG, Parnigotto PP, Nussdorfer GG.

Biomaterials. 2005 May;26(15):2567-74.

PMID:
15585259
12.

Physiology and metabolism of tissue-engineered skeletal muscle.

Cheng CS, Davis BN, Madden L, Bursac N, Truskey GA.

Exp Biol Med (Maywood). 2014 Sep;239(9):1203-14. doi: 10.1177/1535370214538589. Epub 2014 Jun 9. Review.

13.

Aligned electrospun polymer fibres for skeletal muscle regeneration.

Aviss KJ, Gough JE, Downes S.

Eur Cell Mater. 2010 May 13;19:193-204.

14.

Defined electrical stimulation emphasizing excitability for the development and testing of engineered skeletal muscle.

Khodabukus A, Baar K.

Tissue Eng Part C Methods. 2012 May;18(5):349-57. doi: 10.1089/ten.TEC.2011.0364. Epub 2011 Dec 28.

PMID:
22092374
15.

Power spectral analysis of surface electromyography (EMG) at matched contraction levels of the first dorsal interosseous muscle in stroke survivors.

Li X, Shin H, Zhou P, Niu X, Liu J, Rymer WZ.

Clin Neurophysiol. 2014 May;125(5):988-94. doi: 10.1016/j.clinph.2013.09.044. Epub 2013 Nov 21.

PMID:
24268816
16.

Local tissue geometry determines contractile force generation of engineered muscle networks.

Bian W, Juhas M, Pfeiler TW, Bursac N.

Tissue Eng Part A. 2012 May;18(9-10):957-67. doi: 10.1089/ten.TEA.2011.0313. Epub 2012 Jan 4.

17.

Functional evaluation of nerve-skeletal muscle constructs engineered in vitro.

Larkin LM, Van der Meulen JH, Dennis RG, Kennedy JB.

In Vitro Cell Dev Biol Anim. 2006 Mar-Apr;42(3-4):75-82.

PMID:
16759152
18.

The role of fibroblasts in self-assembled skeletal muscle.

Li M, Dickinson CE, Finkelstein EB, Neville CM, Sundback CA.

Tissue Eng Part A. 2011 Nov;17(21-22):2641-50. doi: 10.1089/ten.TEA.2010.0700. Epub 2011 Jul 28.

PMID:
21657983
19.

Effects of B-cell lymphoma 2 gene transfer to myoblast cells on skeletal muscle tissue formation using magnetic force-based tissue engineering.

Sato M, Ito A, Akiyama H, Kawabe Y, Kamihira M.

Tissue Eng Part A. 2013 Jan;19(1-2):307-15. doi: 10.1089/ten.TEA.2011.0728. Epub 2012 Nov 21.

20.

Fabrication of myogenic engineered tissue constructs.

Pacak CA, Cowan DB.

J Vis Exp. 2009 May 1;(27). pii: 1137. doi: 10.3791/1137.

Items per page

Supplemental Content

Write to the Help Desk