Format
Items per page
Sort by

Send to:

Choose Destination

Results: 1 to 20 of 156

Similar articles for PubMed (Select 23441112)

1.

Changes in zebrafish (Danio rerio) lens crystallin content during development.

Wages P, Horwitz J, Ding L, Corbin RW, Posner M.

Mol Vis. 2013;19:408-17. Epub 2013 Feb 18.

2.

A proteome map of the zebrafish (Danio rerio) lens reveals similarities between zebrafish and mammalian crystallin expression.

Posner M, Hawke M, Lacava C, Prince CJ, Bellanco NR, Corbin RW.

Mol Vis. 2008 Apr 25;14:806-14.

3.

Comparative proteomics analysis of degenerative eye lenses of nocturnal rice eel and catfish as compared to diurnal zebrafish.

Lin YR, Mok HK, Wu YH, Liang SS, Hsiao CC, Huang CH, Chiou SH.

Mol Vis. 2013;19:623-37. Epub 2013 Mar 20.

4.

Susceptibility of ovine lens crystallins to proteolytic cleavage during formation of hereditary cataract.

Robertson LJ, David LL, Riviere MA, Wilmarth PA, Muir MS, Morton JD.

Invest Ophthalmol Vis Sci. 2008 Mar;49(3):1016-22. doi: 10.1167/iovs.07-0792.

PMID:
18326725
5.

Lens growth and protein changes in the eastern grey kangaroo.

Augusteyn RC.

Mol Vis. 2011;17:3234-42. Epub 2011 Dec 14.

6.

Expression and regulation of alpha-, beta-, and gamma-crystallins in mammalian lens epithelial cells.

Wang X, Garcia CM, Shui YB, Beebe DC.

Invest Ophthalmol Vis Sci. 2004 Oct;45(10):3608-19.

PMID:
15452068
7.

Age-related changes in the water-soluble lens protein composition of Wistar and accelerated-senescence OXYS rats.

Kopylova LV, Cherepanov IV, Snytnikova OA, Rumyantseva YV, Kolosova NG, Tsentalovich YP, Sagdeev RZ.

Mol Vis. 2011;17:1457-67. Epub 2011 Jun 1.

8.

Proteomic analysis of water insoluble proteins from normal and cataractous human lenses.

Harrington V, Srivastava OP, Kirk M.

Mol Vis. 2007 Sep 14;13:1680-94.

PMID:
17893670
9.

The zebrafish lens proteome during development and aging.

Greiling TM, Houck SA, Clark JI.

Mol Vis. 2009 Nov 13;15:2313-25.

10.

Crystallin distribution patterns in concentric layers from toad eye lenses.

Keenan J, Elia G, Dunn MJ, Orr DF, Pierscionek BK.

Proteomics. 2009 Dec;9(23):5340-9. doi: 10.1002/pmic.200800986.

PMID:
19813212
11.

Crosslinking of human lens 9 kDa gammaD-crystallin fragment in vitro and in vivo.

Srivastava OP, Srivastava K.

Mol Vis. 2003 Dec 8;9:644-56.

12.

Alterations to proteins in the lens of hereditary Crygs-mutated cataractous mice.

Ji Y, Bi H, Li N, Jin H, Yang P, Kong X, Yan S, Lu Y.

Mol Vis. 2010 Jun 11;16:1068-75.

13.

Patterns of crystallin distribution in porcine eye lenses.

Keenan J, Orr DF, Pierscionek BK.

Mol Vis. 2008 Jul 4;14:1245-53.

14.

Lens proteome map and alpha-crystallin profile of the catfish Rita rita.

Mohanty BP, Bhattacharjee S, Das MK.

Indian J Biochem Biophys. 2011 Feb;48(1):35-41.

PMID:
21469600
15.

AlphaA-crystallin expression prevents gamma-crystallin insolubility and cataract formation in the zebrafish cloche mutant lens.

Goishi K, Shimizu A, Najarro G, Watanabe S, Rogers R, Zon LI, Klagsbrun M.

Development. 2006 Jul;133(13):2585-93. Epub 2006 May 25.

16.

Lens proteomics: the accumulation of crystallin modifications in the mouse lens with age.

Ueda Y, Duncan MK, David LL.

Invest Ophthalmol Vis Sci. 2002 Jan;43(1):205-15.

PMID:
11773033
17.
18.

Identification of in vivo phosphorylation sites of lens proteins from porcine eye lenses by a gel-free phosphoproteomics approach.

Chiou SH, Huang CH, Lee IL, Wang YT, Liu NY, Tsay YG, Chen YJ.

Mol Vis. 2010 Feb 24;16:294-302.

19.

alpha-Lipoic acid alters post-translational modifications and protects the chaperone activity of lens alpha-crystallin in naphthalene-induced cataract.

Chen Y, Yi L, Yan G, Fang Y, Jang Y, Wu X, Zhou X, Wei L.

Curr Eye Res. 2010 Jul;35(7):620-30. doi: 10.3109/02713681003768211.

PMID:
20597648
Format
Items per page
Sort by

Send to:

Choose Destination

Supplemental Content

Write to the Help Desk