Format
Sort by

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 269

1.

Insights into the interplay of Lewis and Brønsted acid catalysts in glucose and fructose conversion to 5-(hydroxymethyl)furfural and levulinic acid in aqueous media.

Choudhary V, Mushrif SH, Ho C, Anderko A, Nikolakis V, Marinkovic NS, Frenkel AI, Sandler SI, Vlachos DG.

J Am Chem Soc. 2013 Mar 13;135(10):3997-4006. doi: 10.1021/ja3122763. Epub 2013 Mar 1.

PMID:
23432136
2.

Insights into the Cr(III) catalyzed isomerization mechanism of glucose to fructose in the presence of water using ab initio molecular dynamics.

Mushrif SH, Varghese JJ, Vlachos DG.

Phys Chem Chem Phys. 2014 Sep 28;16(36):19564-72. doi: 10.1039/c4cp02095b.

PMID:
25105840
3.

Comparison of homogeneous and heterogeneous catalysts for glucose-to-fructose isomerization in aqueous media.

Choudhary V, Pinar AB, Lobo RF, Vlachos DG, Sandler SI.

ChemSusChem. 2013 Dec;6(12):2369-76. doi: 10.1002/cssc.201300328. Epub 2013 Sep 17.

PMID:
24106178
4.

Fructose dehydration to 5-hydroxymethylfurfural over solid acid catalysts in a biphasic system.

Ordomsky VV, van der Schaaf J, Schouten JC, Nijhuis TA.

ChemSusChem. 2012 Sep;5(9):1812-9. doi: 10.1002/cssc.201200072. Epub 2012 Jul 6.

PMID:
22777706
5.

Kinetics and reaction engineering of levulinic acid production from aqueous glucose solutions.

Weingarten R, Cho J, Xing R, Conner WC Jr, Huber GW.

ChemSusChem. 2012 Jul;5(7):1280-90. doi: 10.1002/cssc.201100717. Epub 2012 Jun 13.

PMID:
22696262
6.

Glucose and fructose to platform chemicals: understanding the thermodynamic landscapes of acid-catalysed reactions using high-level ab initio methods.

Assary RS, Kim T, Low JJ, Greeley J, Curtiss LA.

Phys Chem Chem Phys. 2012 Dec 28;14(48):16603-11. doi: 10.1039/c2cp41842h. Epub 2012 Aug 29.

PMID:
22932938
7.

Solvent effect on pathways and mechanisms for D-fructose conversion to 5-hydroxymethyl-2-furaldehyde: in situ 13C NMR study.

Kimura H, Nakahara M, Matubayasi N.

J Phys Chem A. 2013 Mar 14;117(10):2102-13. doi: 10.1021/jp312002h. Epub 2013 Mar 4.

PMID:
23458365
8.

Efficient and selective dehydration of fructose to 5-hydroxymethylfurfural catalyzed by Brønsted-acidic ionic liquids.

Tong X, Li Y.

ChemSusChem. 2010 Mar 22;3(3):350-5. doi: 10.1002/cssc.200900224.

PMID:
20082406
9.

Understanding solvent effects in the selective conversion of fructose to 5-hydroxymethyl-furfural: a molecular dynamics investigation.

Mushrif SH, Caratzoulas S, Vlachos DG.

Phys Chem Chem Phys. 2012 Feb 28;14(8):2637-44. doi: 10.1039/c2cp22694d. Epub 2012 Jan 25.

PMID:
22273799
10.

Molecular aspects of glucose dehydration by chromium chlorides in ionic liquids.

Zhang Y, Pidko EA, Hensen EJ.

Chemistry. 2011 May 2;17(19):5281-8. doi: 10.1002/chem.201003645. Epub 2011 Apr 12.

PMID:
21488106
11.

Integrating enzymatic and acid catalysis to convert glucose into 5-hydroxymethylfurfural.

Huang R, Qi W, Su R, He Z.

Chem Commun (Camb). 2010 Feb 21;46(7):1115-7. doi: 10.1039/b921306f. Epub 2009 Dec 24.

PMID:
20126731
12.

Metal-free dehydration of glucose to 5-(hydroxymethyl)furfural in ionic liquids with boric acid as a promoter.

Ståhlberg T, Rodriguez-Rodriguez S, Fristrup P, Riisager A.

Chemistry. 2011 Feb 1;17(5):1456-64. doi: 10.1002/chem.201002171. Epub 2011 Jan 10.

PMID:
21268148
13.

Dehydration of fructose to 5-hydroxymethylfurfural by rare earth metal trifluoromethanesulfonates in organic solvents.

Wang F, Shi AW, Qin XX, Liu CL, Dong WS.

Carbohydr Res. 2011 May 15;346(7):982-5. doi: 10.1016/j.carres.2011.03.009. Epub 2011 Mar 30.

PMID:
21453907
14.

Mechanism of Brønsted acid-catalyzed glucose dehydration.

Yang L, Tsilomelekis G, Caratzoulas S, Vlachos DG.

ChemSusChem. 2015 Apr 24;8(8):1334-41. doi: 10.1002/cssc.201403264. Epub 2015 Jan 8.

PMID:
25572774
15.

Glucose reactions with acid and base catalysts in hot compressed water at 473 K.

Watanabe M, Aizawa Y, Iida T, Aida TM, Levy C, Sue K, Inomata H.

Carbohydr Res. 2005 Sep 5;340(12):1925-30.

PMID:
16023627
16.

Glucose dehydration to 5-hydroxymethylfurfural in a biphasic system over solid acid foams.

Ordomsky VV, van der Schaaf J, Schouten JC, Nijhuis TA.

ChemSusChem. 2013 Sep;6(9):1697-707. doi: 10.1002/cssc.201300017. Epub 2013 Apr 24.

PMID:
23616489
17.

Conversion of fructose into 5-hydroxymethylfurfural (HMF) and its derivatives promoted by inorganic salt in alcohol.

Liu J, Tang Y, Wu K, Bi C, Cui Q.

Carbohydr Res. 2012 Mar 1;350:20-4. doi: 10.1016/j.carres.2011.12.006. Epub 2012 Jan 5.

PMID:
22264628
18.

Conversion of fructose, glucose, and cellulose to 5-hydroxymethylfurfural by alkaline earth phosphate catalysts in hot compressed water.

Daorattanachai P, Khemthong P, Viriya-Empikul N, Laosiripojana N, Faungnawakij K.

Carbohydr Res. 2012 Dec 1;363:58-61. doi: 10.1016/j.carres.2012.09.022. Epub 2012 Oct 5.

PMID:
23123573
19.

Reactivity of metal catalysts in glucose-fructose conversion.

Loerbroks C, van Rijn J, Ruby MP, Tong Q, Schüth F, Thiel W.

Chemistry. 2014 Sep 15;20(38):12298-309. doi: 10.1002/chem.201402437. Epub 2014 Aug 26.

PMID:
25156402
20.

InCl3-catalyzed conversion of carbohydrates into 5-hydroxymethylfurfural in biphasic system.

Shen Y, Sun J, Yi Y, Li M, Wang B, Xu F, Sun R.

Bioresour Technol. 2014 Nov;172:457-60. doi: 10.1016/j.biortech.2014.09.077. Epub 2014 Sep 26.

PMID:
25304730
Items per page

Supplemental Content

Write to the Help Desk