Display Settings:

Format
Items per page
Sort by

Send to:

Choose Destination

Results: 1 to 20 of 146

1.

Use of (113)Cd NMR to probe the native metal binding sites in metalloproteins: an overview.

Armitage IM, Drakenberg T, Reilly B.

Met Ions Life Sci. 2013;11:117-44. doi: 10.1007/978-94-007-5179-8_6. Review.

PMID:
23430773
[PubMed - indexed for MEDLINE]
2.

Cadmium in metallothioneins.

Freisinger E, Vašák M.

Met Ions Life Sci. 2013;11:339-71. doi: 10.1007/978-94-007-5179-8_11. Review.

PMID:
23430778
[PubMed - indexed for MEDLINE]
3.

113Cd NMR. Arsenate binding to Cd(II) alkaline phosphatase.

Gettins P, Coleman JE.

J Biol Chem. 1984 Apr 25;259(8):4987-90.

PMID:
6425281
[PubMed - indexed for MEDLINE]
Free Article
4.

NMR studies of metalloproteins.

Li H, Sun H.

Top Curr Chem. 2012;326:69-98. doi: 10.1007/128_2011_214. Review.

PMID:
21809188
[PubMed - indexed for MEDLINE]
5.

NMR spectroscopic studies of I = 1/2 metal ions in biological systems.

Oz G, Pountney DL, Armitage IM.

Biochem Cell Biol. 1998;76(2-3):223-34. Review.

PMID:
9923691
[PubMed - indexed for MEDLINE]
6.

Metal exchange in metallothioneins: a novel structurally significant Cd(5) species in the alpha domain of human metallothionein 1a.

Rigby Duncan KE, Kirby CW, Stillman MJ.

FEBS J. 2008 May;275(9):2227-39. doi: 10.1111/j.1742-4658.2008.06375.x.

PMID:
18429853
[PubMed - indexed for MEDLINE]
7.

Structure of the metal clusters in rabbit liver metallothionein.

Otvos JD, Armitage IM.

Proc Natl Acad Sci U S A. 1980 Dec;77(12):7094-8.

PMID:
6938956
[PubMed - indexed for MEDLINE]
Free PMC Article
8.

Chloride binding to alkaline phosphatase. 113Cd and 35Cl NMR.

Gettins P, Coleman JE.

J Biol Chem. 1984 Sep 10;259(17):11036-40.

PMID:
6381493
[PubMed - indexed for MEDLINE]
Free Article
9.

Structural characterization of the divalent cation sites of bacterial phosphotriesterase by 113Cd NMR spectroscopy.

Omburo GA, Mullins LS, Raushel FM.

Biochemistry. 1993 Sep 7;32(35):9148-55.

PMID:
8396425
[PubMed - indexed for MEDLINE]
10.

Uncoupling metallonuclease metal ion binding sites via nudge mutagenesis.

Papadakos GA, Nastri H, Riggs P, Dupureur CM.

J Biol Inorg Chem. 2007 May;12(4):557-69. Epub 2007 Feb 17.

PMID:
17308914
[PubMed - indexed for MEDLINE]
11.

Amicyanin metal-site structure and interaction with MADH: PAC and NMR spectroscopy of Ag-, Cd-, and Cu-amicyanin.

Jørgensen LE, Ubbink M, Danielsen E.

J Biol Inorg Chem. 2004 Jan;9(1):27-38. Epub 2003 Nov 5.

PMID:
14605949
[PubMed - indexed for MEDLINE]
12.

Identification of cysteine ligands in metalloproteins using optical and NMR spectroscopy: cadmium-substituted rubredoxin as a model [Cd(CysS)4]2- center.

Henehan CJ, Pountney DL, Zerbe O, Vasák M.

Protein Sci. 1993 Oct;2(10):1756-64.

PMID:
8251947
[PubMed - indexed for MEDLINE]
Free PMC Article
13.

Metal-binding properties and structural characterization of a self-assembled coiled coil: formation of a polynuclear Cd-thiolate cluster.

Zaytsev DV, Morozov VA, Fan J, Zhu X, Mukherjee M, Ni S, Kennedy MA, Ogawa MY.

J Inorg Biochem. 2013 Feb;119:1-9. doi: 10.1016/j.jinorgbio.2012.10.010. Epub 2012 Oct 29.

PMID:
23160144
[PubMed - indexed for MEDLINE]
14.

31P nuclear magnetic resonance of phosphoenzyme intermediates of alkaline phosphatase.

Gettins P, Coleman JE.

J Biol Chem. 1983 Jan 10;258(1):408-16.

PMID:
6336753
[PubMed - indexed for MEDLINE]
Free Article
15.

Soft metal ions, Cd(II) and Hg(II), induce triple-stranded alpha-helical assembly and folding of a de novo designed peptide in their trigonal geometries.

Li X, Suzuki K, Kanaori K, Tajima K, Kashiwada A, Hiroaki H, Kohda D, Tanaka T.

Protein Sci. 2000 Jul;9(7):1327-33.

PMID:
10933497
[PubMed - indexed for MEDLINE]
Free PMC Article
16.

Ca2+ coordination to backbone carbonyl oxygen atoms in calmodulin and other EF-hand proteins: 15N chemical shifts as probes for monitoring individual-site Ca2+ coordination.

Biekofsky RR, Martin SR, Browne JP, Bayley PM, Feeney J.

Biochemistry. 1998 May 19;37(20):7617-29.

PMID:
9585577
[PubMed - indexed for MEDLINE]
17.

The correlation of 113Cd NMR and 111mCd PAC spectroscopies provides a powerful approach for the characterization of the structure of Cd(II)-substituted Zn(II) proteins.

Iranzo O, Jakusch T, Lee KH, Hemmingsen L, Pecoraro VL.

Chemistry. 2009;15(15):3761-72. doi: 10.1002/chem.200802105.

PMID:
19229934
[PubMed - indexed for MEDLINE]
Free PMC Article
18.

Using diastereopeptides to control metal ion coordination in proteins.

Peacock AF, Hemmingsen L, Pecoraro VL.

Proc Natl Acad Sci U S A. 2008 Oct 28;105(43):16566-71. doi: 10.1073/pnas.0806792105. Epub 2008 Oct 21.

PMID:
18940928
[PubMed - indexed for MEDLINE]
Free PMC Article
19.

Application of 113Cd NMR to metallothioneins.

Vasák M.

Biodegradation. 1998;9(6):501-12. Review.

PMID:
10335586
[PubMed - indexed for MEDLINE]
20.

Determination by cadmium-113 nuclear magnetic resonance of the structural basis for metal ion dependent anticooperativity in alkaline phosphatase.

Otvos JD, Armitage IM.

Biochemistry. 1980 Aug 19;19(17):4031-43.

PMID:
6996715
[PubMed - indexed for MEDLINE]

Display Settings:

Format
Items per page
Sort by

Send to:

Choose Destination

Supplemental Content

Write to the Help Desk