Format
Items per page
Sort by

Send to:

Choose Destination

Results: 1 to 20 of 192

Similar articles for PubMed (Select 23428927)

2.

Relation between plaque type, plaque thickness, blood shear stress, and plaque stress in coronary arteries assessed by X-ray angiography and intravascular ultrasound.

Balocco S, Gatta C, Alberti M, Carrillo X, Rigla J, Radeva P.

Med Phys. 2012 Dec;39(12):7430-45. doi: 10.1118/1.4760993.

PMID:
23231293
3.

Localized elevation of shear stress is related to coronary plaque rupture: a 3-dimensional intravascular ultrasound study with in-vivo color mapping of shear stress distribution.

Fukumoto Y, Hiro T, Fujii T, Hashimoto G, Fujimura T, Yamada J, Okamura T, Matsuzaki M.

J Am Coll Cardiol. 2008 Feb 12;51(6):645-50. doi: 10.1016/j.jacc.2007.10.030.

4.

Strain distribution over plaques in human coronary arteries relates to shear stress.

Gijsen FJ, Wentzel JJ, Thury A, Mastik F, Schaar JA, Schuurbiers JC, Slager CJ, van der Giessen WJ, de Feyter PJ, van der Steen AF, Serruys PW.

Am J Physiol Heart Circ Physiol. 2008 Oct;295(4):H1608-14. doi: 10.1152/ajpheart.01081.2007. Epub 2008 Jul 11.

5.

Impact of plaques in the left coronary artery on wall shear stress and pressure gradient in coronary side branches.

Chaichana T, Sun Z, Jewkes J.

Comput Methods Biomech Biomed Engin. 2014;17(2):108-18. doi: 10.1080/10255842.2012.671308. Epub 2012 Mar 26.

PMID:
22443493
6.

Coronary artery wall shear stress is associated with progression and transformation of atherosclerotic plaque and arterial remodeling in patients with coronary artery disease.

Samady H, Eshtehardi P, McDaniel MC, Suo J, Dhawan SS, Maynard C, Timmins LH, Quyyumi AA, Giddens DP.

Circulation. 2011 Aug 16;124(7):779-88. doi: 10.1161/CIRCULATIONAHA.111.021824. Epub 2011 Jul 25.

7.

Biomechanical factors in coronary vulnerable plaque risk of rupture: intravascular ultrasound-based patient-specific fluid-structure interaction studies.

Liang X, Xenos M, Alemu Y, Rambhia SH, Lavi I, Kornowski R, Gruberg L, Fuchs S, Einav S, Bluestein D.

Coron Artery Dis. 2013 Mar;24(2):75-87. doi: 10.1097/MCA.0b013e32835bbe99.

PMID:
23363983
8.

Prediction of progression of coronary artery disease and clinical outcomes using vascular profiling of endothelial shear stress and arterial plaque characteristics: the PREDICTION Study.

Stone PH, Saito S, Takahashi S, Makita Y, Nakamura S, Kawasaki T, Takahashi A, Katsuki T, Nakamura S, Namiki A, Hirohata A, Matsumura T, Yamazaki S, Yokoi H, Tanaka S, Otsuji S, Yoshimachi F, Honye J, Harwood D, Reitman M, Coskun AU, Papafaklis MI, Feldman CL; PREDICTION Investigators.

Circulation. 2012 Jul 10;126(2):172-81. doi: 10.1161/CIRCULATIONAHA.112.096438. Epub 2012 Jun 21.

9.

A finite element investigation on plaque vulnerability in realistic healthy and atherosclerotic human coronary arteries.

Karimi A, Navidbakhsh M, Faghihi S, Shojaei A, Hassani K.

Proc Inst Mech Eng H. 2013 Feb;227(2):148-61.

PMID:
23513986
10.

In-vivo prediction of human coronary plaque rupture location using intravascular ultrasound and the finite element method.

Ohayon J, Teppaz P, Finet G, Rioufol G.

Coron Artery Dis. 2001 Dec;12(8):655-63.

PMID:
11811331
11.

Strain measurement in coronary arteries using intravascular ultrasound and deformable images.

Veress AI, Weiss JA, Gullberg GT, Vince DG, Rabbitt RD.

J Biomech Eng. 2002 Dec;124(6):734-41.

PMID:
12596642
12.

Is arterial wall-strain stiffening an additional process responsible for atherosclerosis in coronary bifurcations?: an in vivo study based on dynamic CT and MRI.

Ohayon J, Gharib AM, Garcia A, Heroux J, Yazdani SK, Malvè M, Tracqui P, Martinez MA, Doblare M, Finet G, Pettigrew RI.

Am J Physiol Heart Circ Physiol. 2011 Sep;301(3):H1097-106. doi: 10.1152/ajpheart.01120.2010. Epub 2011 Jun 17.

13.

Choosing the optimal wall shear parameter for the prediction of plaque location-A patient-specific computational study in human left coronary arteries.

Rikhtegar F, Knight JA, Olgac U, Saur SC, Poulikakos D, Marshall W Jr, Cattin PC, Alkadhi H, Kurtcuoglu V.

Atherosclerosis. 2012 Apr;221(2):432-7. doi: 10.1016/j.atherosclerosis.2012.01.018. Epub 2012 Jan 18.

PMID:
22317967
14.

Computational fluid dynamics analysis of the effect of plaques in the left coronary artery.

Chaichana T, Sun Z, Jewkes J.

Comput Math Methods Med. 2012;2012:504367. doi: 10.1155/2012/504367. Epub 2012 Feb 12.

15.

Study of the evolution of the shear stress on the restenosis after coronary angioplasty.

García J, Crespo A, Goicolea J, Sanmartín M, García C.

J Biomech. 2006;39(5):799-805.

PMID:
16488219
16.

The influence of axial image resolution on atherosclerotic plaque stress computations.

Nieuwstadt HA, Akyildiz AC, Speelman L, Virmani R, van der Lugt A, van der Steen AF, Wentzel JJ, Gijsen FJ.

J Biomech. 2013 Feb 22;46(4):689-95. doi: 10.1016/j.jbiomech.2012.11.042. Epub 2012 Dec 20.

17.

Does microcalcification increase the risk of rupture?

Cilla M, Monterde D, Peña E, Martínez MÁ.

Proc Inst Mech Eng H. 2013 May;227(5):588-99. doi: 10.1177/0954411913479530. Epub 2013 Mar 6.

PMID:
23637269
18.

Plaque development, vessel curvature, and wall shear stress in coronary arteries assessed by X-ray angiography and intravascular ultrasound.

Wahle A, Lopez JJ, Olszewski ME, Vigmostad SC, Chandran KB, Rossen JD, Sonka M.

Med Image Anal. 2006 Aug;10(4):615-31. Epub 2006 Apr 27.

19.

Plaque rupture: plaque stress, shear stress, and pressure drop.

Li ZY, Gillard JH.

J Am Coll Cardiol. 2008 Aug 5;52(6):499-500; author reply 500. doi: 10.1016/j.jacc.2008.04.040. No abstract available.

20.

Sequential structural and fluid dynamic numerical simulations of a stented bifurcated coronary artery.

Morlacchi S, Chiastra C, Gastaldi D, Pennati G, Dubini G, Migliavacca F.

J Biomech Eng. 2011 Dec;133(12):121010. doi: 10.1115/1.4005476.

PMID:
22206427
Format
Items per page
Sort by

Send to:

Choose Destination

Supplemental Content

Write to the Help Desk