Format
Items per page
Sort by

Send to:

Choose Destination

Results: 1 to 20 of 101

Similar articles for PubMed (Select 23401413)

1.

Motility imaging via optical coherence phase microscopy enables label-free monitoring of tissue growth and viability in 3D tissue-engineering scaffolds.

Holmes C, Tabrizian M, Bagnaninchi PO.

J Tissue Eng Regen Med. 2015 May;9(5):641-5. doi: 10.1002/term.1687. Epub 2013 Feb 12.

PMID:
23401413
2.

High-performance multi-megahertz optical coherence tomography based on amplified optical time-stretch.

Xu J, Wei X, Yu L, Zhang C, Xu J, Wong KK, Tsia KK.

Biomed Opt Express. 2015 Mar 18;6(4):1340-50. doi: 10.1364/BOE.6.001340. eCollection 2015 Apr 1.

3.

Porous three-dimensional carbon nanotube scaffolds for tissue engineering.

Lalwani G, Gopalan A, D'Agati M, Srinivas Sankaran J, Judex S, Qin YX, Sitharaman B.

J Biomed Mater Res A. 2015 Mar 18. doi: 10.1002/jbm.a.35449. [Epub ahead of print]

PMID:
25788440
4.

Dynamic Assessment of the Endothelialization of Tissue-Engineered Blood Vessels Using an Optical Coherence Tomography Catheter-Based Fluorescence Imaging System.

Gurjarpadhye AA, DeWitt MR, Xu Y, Wang G, Rylander MN, Rylander CG.

Tissue Eng Part C Methods. 2015 Jul;21(7):758-66. doi: 10.1089/ten.TEC.2014.0345. Epub 2015 Jan 30.

PMID:
25539889
5.

An open source image processing method to quantitatively assess tissue growth after non-invasive magnetic resonance imaging in human bone marrow stromal cell seeded 3D polymeric scaffolds.

Leferink AM, Fratila RM, Koenrades MA, van Blitterswijk CA, Velders A, Moroni L.

PLoS One. 2014 Dec 12;9(12):e115000. doi: 10.1371/journal.pone.0115000. eCollection 2014.

6.

Computed optical interferometric tomography for high-speed volumetric cellular imaging.

Liu YZ, Shemonski ND, Adie SG, Ahmad A, Bower AJ, Carney PS, Boppart SA.

Biomed Opt Express. 2014 Aug 8;5(9):2988-3000. doi: 10.1364/BOE.5.002988. eCollection 2014 Sep 1.

7.
8.

Optical coherence micro-elastography: mechanical-contrast imaging of tissue microstructure.

Kennedy BF, McLaughlin RA, Kennedy KM, Chin L, Curatolo A, Tien A, Latham B, Saunders CM, Sampson DD.

Biomed Opt Express. 2014 Jun 9;5(7):2113-24. doi: 10.1364/BOE.5.002113. eCollection 2014 Jul 1.

9.

Engineering of Nanoscale Contrast Agents for Optical Coherence Tomography.

Gordon AY, Jayagopal A.

J Nanomed Nanotechnol. 2014 Jan 30;Suppl 5:004.

10.

The potential of label-free nonlinear optical molecular microscopy to non-invasively characterize the viability of engineered human tissue constructs.

Chen LC, Lloyd WR, Kuo S, Kim HM, Marcelo CL, Feinberg SE, Mycek MA.

Biomaterials. 2014 Aug;35(25):6667-76. doi: 10.1016/j.biomaterials.2014.04.080. Epub 2014 May 20.

11.

Optical projection tomography can be used to investigate spatial distribution of chondrocytes in three-dimensional biomaterial scaffolds for cartilage tissue engineering.

Järvinen E, Muhonen V, Haaparanta AM, Kellomäki M, Kiviranta I.

Biomed Mater Eng. 2014;24(3):1549-53. doi: 10.3233/BME-140959.

PMID:
24840193
12.

Culture of equine fibroblast-like synoviocytes on synthetic tissue scaffolds towards meniscal tissue engineering: a preliminary cell-seeding study.

Warnock JJ, Fox DB, Stoker AM, Beatty M, Cockrell M, Janicek JC, Cook JL.

PeerJ. 2014 Apr 17;2:e353. doi: 10.7717/peerj.353. eCollection 2014.

13.

Label-free cell-based assay with spectral-domain optical coherence phase microscopy.

Ryu S, Hyun KA, Heo J, Jung HI, Joo C.

J Biomed Opt. 2014 Apr;19(4):046003. doi: 10.1117/1.JBO.19.4.046003.

PMID:
24711152
14.

Proliferation of ASC-derived endothelial cells in a 3D electrospun mesh: impact of bone-biomimetic nanocomposite and co-culture with ASC-derived osteoblasts.

Gao S, Calcagni M, Welti M, Hemmi S, Hild N, Stark WJ, Bürgisser GM, Wanner GA, Cinelli P, Buschmann J.

Injury. 2014 Jun;45(6):974-80. doi: 10.1016/j.injury.2014.02.035. Epub 2014 Mar 12.

PMID:
24650943
15.

Iron Oxide-labeled Collagen Scaffolds for Non-invasive MR Imaging in Tissue Engineering.

Mertens ME, Hermann A, Bühren A, Olde-Damink L, Möckel D, Gremse F, Ehling J, Kiessling F, Lammers T.

Adv Funct Mater. 2014 Feb 12;24(6):754-762.

PMID:
24569840
16.

3D conductive nanocomposite scaffold for bone tissue engineering.

Shahini A, Yazdimamaghani M, Walker KJ, Eastman MA, Hatami-Marbini H, Smith BJ, Ricci JL, Madihally SV, Vashaee D, Tayebi L.

Int J Nanomedicine. 2014;9:167-81. doi: 10.2147/IJN.S54668. Epub 2013 Dec 24.

17.

High thick layer-by-layer 3D multiscale fibrous scaffolds for enhanced cell infiltration and it's potential in tissue engineering.

Shalumon KT, Chennazhi KP, Nair SV, Jayakumar R.

J Biomed Nanotechnol. 2013 Dec;9(12):2117-22.

PMID:
24266265
18.

Imaging of non-tumorous and tumorous human brain tissues with full-field optical coherence tomography.

Assayag O, Grieve K, Devaux B, Harms F, Pallud J, Chretien F, Boccara C, Varlet P.

Neuroimage Clin. 2013 Apr 20;2:549-57. doi: 10.1016/j.nicl.2013.04.005. eCollection 2013.

19.

[Three-dimensional flow perfusion culture enhances proliferation of human fetal osteoblasts in large scaffold with controlled architecture].

Wang L, Ma ZS, Li DC, Lei W, Hu YY, Wang Z, Li X, Zhang Y, Pei GX.

Zhonghua Yi Xue Za Zhi. 2013 Jul 2;93(25):1970-4. Chinese.

PMID:
24169246
20.

Multimodal ultrasound-photoacoustic imaging of tissue engineering scaffolds and blood oxygen saturation in and around the scaffolds.

Talukdar Y, Avti P, Sun J, Sitharaman B.

Tissue Eng Part C Methods. 2014 May;20(5):440-9. doi: 10.1089/ten.TEC.2013.0203. Epub 2014 Feb 28.

Format
Items per page
Sort by

Send to:

Choose Destination

Supplemental Content

Write to the Help Desk