Display Settings:

Format
Items per page
Sort by

Send to:

Choose Destination

Results: 1 to 20 of 103

1.

Sodium-oxygen batteries with alkyl-carbonate and ether based electrolytes.

Kim J, Lim HD, Gwon H, Kang K.

Phys Chem Chem Phys. 2013 Mar 14;15(10):3623-9. doi: 10.1039/c3cp43225d. Epub 2013 Feb 5.

PMID:
23386220
[PubMed]
2.

Combination of lightweight elements and nanostructured materials for batteries.

Chen J, Cheng F.

Acc Chem Res. 2009 Jun 16;42(6):713-23. doi: 10.1021/ar800229g.

PMID:
19354236
[PubMed]
3.

Sodium-metal halide and sodium-air batteries.

Ha S, Kim JK, Choi A, Kim Y, Lee KT.

Chemphyschem. 2014 Jul 21;15(10):1971-82. doi: 10.1002/cphc.201402215. Epub 2014 Jun 20.

PMID:
24953300
[PubMed - in process]
4.

Advanced zinc-air batteries based on high-performance hybrid electrocatalysts.

Li Y, Gong M, Liang Y, Feng J, Kim JE, Wang H, Hong G, Zhang B, Dai H.

Nat Commun. 2013;4:1805. doi: 10.1038/ncomms2812.

PMID:
23651993
[PubMed]
5.

Oxygen electrocatalysts in metal-air batteries: from aqueous to nonaqueous electrolytes.

Wang ZL, Xu D, Xu JJ, Zhang XB.

Chem Soc Rev. 2014 Nov 21;43(22):7746-86. doi: 10.1039/c3cs60248f.

PMID:
24056780
[PubMed - in process]
6.

A rechargeable room-temperature sodium superoxide (NaO2) battery.

Hartmann P, Bender CL, Vračar M, Dürr AK, Garsuch A, Janek J, Adelhelm P.

Nat Mater. 2013 Mar;12(3):228-32. doi: 10.1038/nmat3486. Epub 2012 Dec 2.

PMID:
23202372
[PubMed]
7.

Raising the cycling stability of aqueous lithium-ion batteries by eliminating oxygen in the electrolyte.

Luo JY, Cui WJ, He P, Xia YY.

Nat Chem. 2010 Sep;2(9):760-5. doi: 10.1038/nchem.763. Epub 2010 Aug 8.

PMID:
20729897
[PubMed - indexed for MEDLINE]
8.

An improved high-performance lithium-air battery.

Jung HG, Hassoun J, Park JB, Sun YK, Scrosati B.

Nat Chem. 2012 Jun 10;4(7):579-85. doi: 10.1038/nchem.1376.

PMID:
22717445
[PubMed - indexed for MEDLINE]
9.

Robust cycling of Li-O2 batteries through the synergistic effect of blended electrolytes.

Kim BG, Lee JN, Lee DJ, Park JK, Choi JW.

ChemSusChem. 2013 Mar;6(3):443-8. doi: 10.1002/cssc.201200801. Epub 2013 Feb 1.

PMID:
23371842
[PubMed - indexed for MEDLINE]
10.

The development of a new type of rechargeable batteries based on hybrid electrolytes.

Zhou H, Wang Y, Li H, He P.

ChemSusChem. 2010 Sep 24;3(9):1009-19. doi: 10.1002/cssc.201000123. Review.

PMID:
20677207
[PubMed - indexed for MEDLINE]
11.

Metal-air batteries: from oxygen reduction electrochemistry to cathode catalysts.

Cheng F, Chen J.

Chem Soc Rev. 2012 Mar 21;41(6):2172-92. doi: 10.1039/c1cs15228a. Epub 2012 Jan 17. Review.

PMID:
22254234
[PubMed - indexed for MEDLINE]
12.

A new piece in the puzzle of lithium/air batteries: computational study on the chemical stability of propylene carbonate in the presence of lithium peroxide.

Laino T, Curioni A.

Chemistry. 2012 Mar 19;18(12):3510-20. doi: 10.1002/chem.201103057. Epub 2012 Feb 22.

PMID:
22354790
[PubMed]
13.

Ionic liquid electrolytes as a platform for rechargeable metal-air batteries: a perspective.

Kar M, Simons TJ, Forsyth M, MacFarlane DR.

Phys Chem Chem Phys. 2014 Sep 21;16(35):18658-74. doi: 10.1039/c4cp02533d.

PMID:
25093926
[PubMed - in process]
14.

A new class of lithium and sodium rechargeable batteries based on selenium and selenium-sulfur as a positive electrode.

Abouimrane A, Dambournet D, Chapman KW, Chupas PJ, Weng W, Amine K.

J Am Chem Soc. 2012 Mar 14;134(10):4505-8. doi: 10.1021/ja211766q. Epub 2012 Feb 29.

PMID:
22364225
[PubMed]
15.

Recent progress in research on high-voltage electrolytes for lithium-ion batteries.

Tan S, Ji YJ, Zhang ZR, Yang Y.

Chemphyschem. 2014 Jul 21;15(10):1956-69. doi: 10.1002/cphc.201402175.

PMID:
25044525
[PubMed - in process]
16.

Reversibility of anodic lithium in rechargeable lithium-oxygen batteries.

Shui JL, Okasinski JS, Kenesei P, Dobbs HA, Zhao D, Almer JD, Liu DJ.

Nat Commun. 2013;4:2255. doi: 10.1038/ncomms3255.

PMID:
23929396
[PubMed]
17.

Solution-grown germanium nanowire anodes for lithium-ion batteries.

Chockla AM, Klavetter KC, Mullins CB, Korgel BA.

ACS Appl Mater Interfaces. 2012 Sep 26;4(9):4658-64. Epub 2012 Aug 28.

PMID:
22894797
[PubMed - indexed for MEDLINE]
18.

A critical review on lithium-air battery electrolytes.

Balaish M, Kraytsberg A, Ein-Eli Y.

Phys Chem Chem Phys. 2014 Feb 21;16(7):2801-22. doi: 10.1039/c3cp54165g.

PMID:
24424632
[PubMed]
19.

Facile synthesis of metal oxide/reduced graphene oxide hybrids with high lithium storage capacity and stable cyclability.

Zhu J, Zhu T, Zhou X, Zhang Y, Lou XW, Chen X, Zhang H, Hng HH, Yan Q.

Nanoscale. 2011 Mar;3(3):1084-9. doi: 10.1039/c0nr00744g. Epub 2010 Dec 22.

PMID:
21180729
[PubMed - indexed for MEDLINE]
20.

Stability of superoxide radicals in glyme solvents for non-aqueous Li-O2 battery electrolytes.

Schwenke KU, Meini S, Wu X, Gasteiger HA, Piana M.

Phys Chem Chem Phys. 2013 Jul 28;15(28):11830-9. doi: 10.1039/c3cp51531a. Epub 2013 Jun 13.

PMID:
23760527
[PubMed]

Display Settings:

Format
Items per page
Sort by

Send to:

Choose Destination

Supplemental Content

Write to the Help Desk