Display Settings:

Format
Items per page
Sort by

Send to:

Choose Destination

Results: 1 to 20 of 131

1.

In situ fabrication of porous graphene electrodes for high-performance energy storage.

Wang ZL, Xu D, Wang HG, Wu Z, Zhang XB.

ACS Nano. 2013 Mar 26;7(3):2422-30. doi: 10.1021/nn3057388. Epub 2013 Feb 18.

PMID:
23383862
[PubMed]
2.

High-performance asymmetric supercapacitor based on graphene hydrogel and nanostructured MnO2.

Gao H, Xiao F, Ching CB, Duan H.

ACS Appl Mater Interfaces. 2012 May;4(5):2801-10. doi: 10.1021/am300455d. Epub 2012 May 4.

PMID:
22545683
[PubMed]
3.

One-Step Electrodeposited Nickel Cobalt Sulfide Nanosheet Arrays for High-Performance Asymmetric Supercapacitors.

Chen W, Xia C, Alshareef HN.

ACS Nano. 2014 Aug 22. [Epub ahead of print]

PMID:
25133989
[PubMed - as supplied by publisher]
4.

Hole defects and nitrogen doping in graphene: implication for supercapacitor applications.

Luo G, Liu L, Zhang J, Li G, Wang B, Zhao J.

ACS Appl Mater Interfaces. 2013 Nov 13;5(21):11184-93. doi: 10.1021/am403427h. Epub 2013 Oct 31.

PMID:
24134508
[PubMed]
5.

Graphene oxide-dispersed pristine CNTs support for MnO2 nanorods as high performance supercapacitor electrodes.

You B, Li N, Zhu H, Zhu X, Yang J.

ChemSusChem. 2013 Mar;6(3):474-80. doi: 10.1002/cssc.201200709. Epub 2013 Feb 18.

PMID:
23417925
[PubMed - indexed for MEDLINE]
6.

Hierarchically porous graphene as a lithium-air battery electrode.

Xiao J, Mei D, Li X, Xu W, Wang D, Graff GL, Bennett WD, Nie Z, Saraf LV, Aksay IA, Liu J, Zhang JG.

Nano Lett. 2011 Nov 9;11(11):5071-8. doi: 10.1021/nl203332e. Epub 2011 Oct 13.

PMID:
21985448
[PubMed - indexed for MEDLINE]
7.

High performance of a solid-state flexible asymmetric supercapacitor based on graphene films.

Choi BG, Chang SJ, Kang HW, Park CP, Kim HJ, Hong WH, Lee S, Huh YS.

Nanoscale. 2012 Aug 21;4(16):4983-8. doi: 10.1039/c2nr30991b. Epub 2012 Jun 29.

PMID:
22751863
[PubMed]
8.

Solution-processed graphene/MnO2 nanostructured textiles for high-performance electrochemical capacitors.

Yu G, Hu L, Vosgueritchian M, Wang H, Xie X, McDonough JR, Cui X, Cui Y, Bao Z.

Nano Lett. 2011 Jul 13;11(7):2905-11. doi: 10.1021/nl2013828. Epub 2011 Jun 13.

PMID:
21667923
[PubMed - indexed for MEDLINE]
9.

Facile ultrasonic synthesis of CoO quantum dot/graphene nanosheet composites with high lithium storage capacity.

Peng C, Chen B, Qin Y, Yang S, Li C, Zuo Y, Liu S, Yang J.

ACS Nano. 2012 Feb 28;6(2):1074-81. doi: 10.1021/nn202888d. Epub 2012 Jan 18.

PMID:
22224549
[PubMed - indexed for MEDLINE]
10.

Rapid synthesis of nitrogen-doped graphene for a lithium ion battery anode with excellent rate performance and super-long cyclic stability.

Hu T, Sun X, Sun H, Xin G, Shao D, Liu C, Lian J.

Phys Chem Chem Phys. 2014 Jan 21;16(3):1060-6. doi: 10.1039/c3cp54494j. Epub 2013 Nov 28.

PMID:
24287587
[PubMed - in process]
11.

Activated graphene-based carbons as supercapacitor electrodes with macro- and mesopores.

Kim T, Jung G, Yoo S, Suh KS, Ruoff RS.

ACS Nano. 2013 Aug 27;7(8):6899-905. doi: 10.1021/nn402077v. Epub 2013 Jul 15.

PMID:
23829569
[PubMed]
12.

3D macroporous graphene frameworks for supercapacitors with high energy and power densities.

Choi BG, Yang M, Hong WH, Choi JW, Huh YS.

ACS Nano. 2012 May 22;6(5):4020-8. doi: 10.1021/nn3003345. Epub 2012 Apr 23.

PMID:
22524516
[PubMed]
13.

Aromatic porous-honeycomb electrodes for a sodium-organic energy storage device.

Sakaushi K, Hosono E, Nickerl G, Gemming T, Zhou H, Kaskel S, Eckert J.

Nat Commun. 2013;4:1485. doi: 10.1038/ncomms2481.

PMID:
23403585
[PubMed]
14.

Phosphorus-doped exfoliated graphene for supercapacitor electrodes.

Karthika P, Rajalakshmi N, Dhathathreyan KS.

J Nanosci Nanotechnol. 2013 Mar;13(3):1746-51.

PMID:
23755584
[PubMed]
15.

Supercapacitor electrodes with especially high rate capability and cyclability based on a novel Pt nanosphere and cysteine-generated graphene.

Zhang D, Zhang X, Chen Y, Wang C, Ma Y, Dong H, Jiang L, Meng Q, Hu W.

Phys Chem Chem Phys. 2012 Aug 21;14(31):10899-903. doi: 10.1039/c2cp41051f. Epub 2012 Jul 6.

PMID:
22772748
[PubMed - indexed for MEDLINE]
16.

β-Cobalt sulfide nanoparticles decorated graphene composite electrodes for high capacity and power supercapacitors.

Qu B, Chen Y, Zhang M, Hu L, Lei D, Lu B, Li Q, Wang Y, Chen L, Wang T.

Nanoscale. 2012 Dec 21;4(24):7810-6. doi: 10.1039/c2nr31902k. Epub 2012 Nov 12.

PMID:
23147355
[PubMed - indexed for MEDLINE]
17.

Holey graphene frameworks for highly efficient capacitive energy storage.

Xu Y, Lin Z, Zhong X, Huang X, Weiss NO, Huang Y, Duan X.

Nat Commun. 2014 Aug 8;5:4554. doi: 10.1038/ncomms5554.

PMID:
25105994
[PubMed - in process]
18.

All-graphene-battery: bridging the gap between supercapacitors and lithium ion batteries.

Kim H, Park KY, Hong J, Kang K.

Sci Rep. 2014 Jun 13;4:5278. doi: 10.1038/srep05278.

PMID:
24923290
[PubMed - in process]
Free PMC Article
19.

Spray-painted binder-free SnSe electrodes for high-performance energy-storage devices.

Wang X, Liu B, Xiang Q, Wang Q, Hou X, Chen D, Shen G.

ChemSusChem. 2014 Jan;7(1):308-13. doi: 10.1002/cssc.201300241. Epub 2013 Dec 11.

PMID:
24339208
[PubMed - in process]
20.

Fabrication of graphene/polyaniline composite for high-performance supercapacitor electrode.

Li J, Xie H, Li Y, Wang J.

J Nanosci Nanotechnol. 2013 Feb;13(2):1132-5.

PMID:
23646587
[PubMed]

Display Settings:

Format
Items per page
Sort by

Send to:

Choose Destination

Supplemental Content

Write to the Help Desk