Format
Items per page
Sort by

Send to:

Choose Destination

Links from PubMed

Items: 1 to 20 of 104

1.

Optical switch based on tunable aperture.

Li L, Liu C, Wang QH.

Opt Lett. 2012 Aug 15;37(16):3306-8. doi: 10.1364/OL.37.003306.

PMID:
23381239
2.

Electrowetting driven optical switch and tunable aperture.

Murade CU, Oh JM, van den Ende D, Mugele F.

Opt Express. 2011 Aug 1;19(16):15525-31. doi: 10.1364/OE.19.015525.

PMID:
21934915
3.

Optical switch using a deformable liquid droplet.

Ren H, Wu ST.

Opt Lett. 2010 Nov 15;35(22):3826-8. doi: 10.1364/OL.35.003826.

PMID:
21082010
4.

Adaptive liquid iris based on electrowetting.

Li L, Liu C, Ren H, Wang QH.

Opt Lett. 2013 Jul 1;38(13):2336-8. doi: 10.1364/OL.38.002336.

PMID:
23811920
5.

Electrowetting-actuated optical switch based on total internal reflection.

Liu C, Wang D, Yao LX, Li L, Wang QH.

Appl Opt. 2015 Apr 1;54(10):2672-6. doi: 10.1364/AO.54.002672.

PMID:
25967175
6.

Electrically actuated liquid iris.

Xu M, Ren H, Lin YH.

Opt Lett. 2015 Mar 1;40(5):831-4. doi: 10.1364/OL.40.000831.

PMID:
25723444
7.

Novel optical switch with a reconfigurable dielectric liquid droplet.

Ren H, Xu S, Ren D, Wu ST.

Opt Express. 2011 Jan 31;19(3):1985-90. doi: 10.1364/OE.19.001985.

PMID:
21369014
8.

Variable aperture controlled by microelectrofluidic iris.

Chang JH, Jung KD, Lee E, Choi M, Lee S, Kim W.

Opt Lett. 2013 Aug 1;38(15):2919-22. doi: 10.1364/OL.38.002919.

PMID:
23903179
9.
10.

Voltage-expandable liquid crystal surface.

Ren H, Xu S, Wu ST.

Lab Chip. 2011 Oct 21;11(20):3426-30. doi: 10.1039/c1lc20367c. Epub 2011 Sep 8.

PMID:
21901206
11.

Optical switch based on variable aperture.

Ren H, Xu S, Wu ST.

Opt Lett. 2012 May 1;37(9):1421-3. doi: 10.1364/OL.37.001421.

PMID:
22555691
12.

Tunable liquid optics: electrowetting-controlled liquid mirrors based on self-assembled Janus tiles.

Bucaro MA, Kolodner PR, Taylor JA, Sidorenko A, Aizenberg J, Krupenkin TN.

Langmuir. 2009 Apr 9;25(6):3876-9. doi: 10.1021/la803537v.

PMID:
19708158
13.

Liquid lens using acoustic radiation force.

Koyama D, Isago R, Nakamura K.

IEEE Trans Ultrason Ferroelectr Freq Control. 2011 Mar;58(3):596-602. doi: 10.1109/TUFFC.2011.1842.

PMID:
21429850
14.

Prototype CO2 laser-induced long-period fiber grating variable optical attenuators and optical tunable filters.

Braiwish MI, Bachim BL, Gaylord TK.

Appl Opt. 2004 Mar 20;43(9):1789-93.

PMID:
15065706
15.

Varifocal liquid lens based on microelectrofluidic technology.

Chang JH, Jung KD, Lee E, Choi M, Lee S, Kim W.

Opt Lett. 2012 Nov 1;37(21):4377-9. doi: 10.1364/OL.37.004377.

PMID:
23114301
16.

Design of a zoom lens without motorized optical elements.

Peng R, Chen J, Zhu C, Zhuang S.

Opt Express. 2007 May 28;15(11):6664-9.

PMID:
19546976
17.

Use of surfactants to reduce the driving voltage of switchable optical elements based on electrowetting.

Roques-Carmes T, Gigante A, Commenge JM, Corbel S.

Langmuir. 2009 Nov 3;25(21):12771-9. doi: 10.1021/la900882h.

PMID:
19785398
18.

Fluidic lens of floating oil using round-pot chamber based on electrowetting.

Choi H, Won Y.

Opt Lett. 2013 Jul 1;38(13):2197-9. doi: 10.1364/OL.38.002197.

PMID:
23811875
19.

Two-phase microfluidics in electrowetting displays and its effect on optical performance.

He T, Jin M, Eijkel JC, Zhou G, Shui L.

Biomicrofluidics. 2016 Feb 11;10(1):011908. doi: 10.1063/1.4941843. eCollection 2016 Jan.

PMID:
26909120
20.

Numerical simulation for meniscus shape and optical performance of a MEMS-based liquid micro-lens.

Lee SL, Yang CF.

Opt Express. 2008 Nov 24;16(24):19995-20007.

PMID:
19030086
Format
Items per page
Sort by

Send to:

Choose Destination

Supplemental Content

Write to the Help Desk