Format
Sort by

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 111

1.

Taxis of Pseudomonas putida F1 toward phenylacetic acid is mediated by the energy taxis receptor Aer2.

Luu RA, Schneider BJ, Ho CC, Nesteryuk V, Ngwesse SE, Liu X, Parales JV, Ditty JL, Parales RE.

Appl Environ Microbiol. 2013 Apr;79(7):2416-23. doi: 10.1128/AEM.03895-12. Epub 2013 Feb 1.

2.
3.

An aerotaxis transducer gene from Pseudomonas putida.

Nichols NN, Harwood CS.

FEMS Microbiol Lett. 2000 Jan 1;182(1):177-83.

4.

Regulation of phenylacetic acid uptake is σ54 dependent in Pseudomonas putida CA-3.

O' Leary ND, O' Mahony MM, Dobson AD.

BMC Microbiol. 2011 Oct 13;11:229. doi: 10.1186/1471-2180-11-229.

5.

Intracellular 2-keto-3-deoxy-6-phosphogluconate is the signal for carbon catabolite repression of phenylacetic acid metabolism in Pseudomonas putida KT2440.

Kim J, Yeom J, Jeon CO, Park W.

Microbiology. 2009 Jul;155(Pt 7):2420-8. doi: 10.1099/mic.0.027060-0. Epub 2009 Apr 30.

PMID:
19406896
6.

Metabolism-dependent taxis towards (methyl)phenols is coupled through the most abundant of three polar localized Aer-like proteins of Pseudomonas putida.

Sarand I, Osterberg S, Holmqvist S, Holmfeldt P, Skärfstad E, Parales RE, Shingler V.

Environ Microbiol. 2008 May;10(5):1320-34. doi: 10.1111/j.1462-2920.2007.01546.x. Epub 2008 Feb 12.

PMID:
18279347
7.

The sigma-factor FliA, ppGpp and DksA coordinate transcriptional control of the aer2 gene of Pseudomonas putida.

Osterberg S, Skärfstad E, Shingler V.

Environ Microbiol. 2010 Jun;12(6):1439-51. doi: 10.1111/j.1462-2920.2009.02139.x. Epub 2010 Jan 18.

PMID:
20089044
8.
9.

Integration of chemotaxis, transport and catabolism in Pseudomonas putida and identification of the aromatic acid chemoreceptor PcaY.

Luu RA, Kootstra JD, Nesteryuk V, Brunton CN, Parales JV, Ditty JL, Parales RE.

Mol Microbiol. 2015 Apr;96(1):134-47. doi: 10.1111/mmi.12929. Epub 2015 Feb 12.

PMID:
25582673
10.

Cytosine chemoreceptor McpC in Pseudomonas putida F1 also detects nicotinic acid.

Parales RE, Nesteryuk V, Hughes JG, Luu RA, Ditty JL.

Microbiology. 2014 Dec;160(Pt 12):2661-9. doi: 10.1099/mic.0.081968-0. Epub 2014 Oct 7.

11.

Three types of taxis used in the response of Acidovorax sp. strain JS42 to 2-nitrotoluene.

Rabinovitch-Deere CA, Parales RE.

Appl Environ Microbiol. 2012 Apr;78(7):2306-15. doi: 10.1128/AEM.07183-11. Epub 2012 Jan 27.

12.
14.

Possible regulatory role for nonaromatic carbon sources in styrene degradation by Pseudomonas putida CA-3.

O'Connor K, Buckley CM, Hartmans S, Dobson AD.

Appl Environ Microbiol. 1995 Feb;61(2):544-8.

15.

Pseudomonas putida F1 has multiple chemoreceptors with overlapping specificity for organic acids.

Parales RE, Luu RA, Chen GY, Liu X, Wu V, Lin P, Hughes JG, Nesteryuk V, Parales JV, Ditty JL.

Microbiology. 2013 Jun;159(Pt 6):1086-96. doi: 10.1099/mic.0.065698-0. Epub 2013 Apr 25.

16.

Aer and Tsr guide Escherichia coli in spatial gradients of oxidizable substrates.

Greer-Phillips SE, Alexandre G, Taylor BL, Zhulin IB.

Microbiology. 2003 Sep;149(Pt 9):2661-7.

PMID:
12949190
17.

Signal balancing by the CetABC and CetZ chemoreceptors controls energy taxis in Campylobacter jejuni.

Reuter M, van Vliet AH.

PLoS One. 2013;8(1):e54390. doi: 10.1371/journal.pone.0054390. Epub 2013 Jan 29.

18.

Responses of Pseudomonas putida to toxic aromatic carbon sources.

Krell T, Lacal J, Guazzaroni ME, Busch A, Silva-Jiménez H, Fillet S, Reyes-Darías JA, Muñoz-Martínez F, Rico-Jiménez M, García-Fontana C, Duque E, Segura A, Ramos JL.

J Biotechnol. 2012 Jul 31;160(1-2):25-32. doi: 10.1016/j.jbiotec.2012.01.026. Epub 2012 Feb 1.

PMID:
22321573
19.

The effect of nutrient limitation on styrene metabolism in Pseudomonas putida CA-3.

O'Connor K, Duetz W, Wind B, Dobson AD.

Appl Environ Microbiol. 1996 Oct;62(10):3594-9.

20.

Chemotaxis of Pseudomonas spp. to the polyaromatic hydrocarbon naphthalene.

Grimm AC, Harwood CS.

Appl Environ Microbiol. 1997 Oct;63(10):4111-5.

Items per page

Supplemental Content

Write to the Help Desk