Format
Items per page
Sort by

Send to:

Choose Destination

Links from PubMed

Items: 1 to 20 of 135

1.

Improve carbon metabolic flux in Saccharomyces cerevisiae at high temperature by overexpressed TSL1 gene.

Ge XY, Xu Y, Chen X.

J Ind Microbiol Biotechnol. 2013 Apr;40(3-4):345-52. doi: 10.1007/s10295-013-1233-2. Epub 2013 Feb 2.

PMID:
23377879
2.

Genetic engineering to enhance the Ehrlich pathway and alter carbon flux for increased isobutanol production from glucose by Saccharomyces cerevisiae.

Kondo T, Tezuka H, Ishii J, Matsuda F, Ogino C, Kondo A.

J Biotechnol. 2012 May 31;159(1-2):32-7. doi: 10.1016/j.jbiotec.2012.01.022. Epub 2012 Feb 9.

PMID:
22342368
3.

Adjustment of trehalose metabolism in wine Saccharomyces cerevisiae strains to modify ethanol yields.

Rossouw D, Heyns EH, Setati ME, Bosch S, Bauer FF.

Appl Environ Microbiol. 2013 Sep;79(17):5197-207. doi: 10.1128/AEM.00964-13. Epub 2013 Jun 21.

4.

Construction of Saccharomyces cerevisiae strains with enhanced ethanol tolerance by mutagenesis of the TATA-binding protein gene and identification of novel genes associated with ethanol tolerance.

Yang J, Bae JY, Lee YM, Kwon H, Moon HY, Kang HA, Yee SB, Kim W, Choi W.

Biotechnol Bioeng. 2011 Aug;108(8):1776-87. doi: 10.1002/bit.23141. Epub 2011 Apr 3.

PMID:
21437883
5.

Improvement of the multiple-stress tolerance of an ethanologenic Saccharomyces cerevisiae strain by freeze-thaw treatment.

Wei P, Li Z, Lin Y, He P, Jiang N.

Biotechnol Lett. 2007 Oct;29(10):1501-8. Epub 2007 May 31.

PMID:
17541503
6.

Increased ethanol production from glycerol by Saccharomyces cerevisiae strains with enhanced stress tolerance from the overexpression of SAGA complex components.

Yu KO, Jung J, Ramzi AB, Choe SH, Kim SW, Park C, Han SO.

Enzyme Microb Technol. 2012 Sep 10;51(4):237-43. doi: 10.1016/j.enzmictec.2012.07.003. Epub 2012 Jul 16.

PMID:
22883559
7.

The proteomic response of Saccharomyces cerevisiae in very high glucose conditions with amino acid supplementation.

Pham TK, Wright PC.

J Proteome Res. 2008 Nov;7(11):4766-74. doi: 10.1021/pr800331s. Epub 2008 Sep 23.

PMID:
18808174
8.

Enhanced thermotolerance for ethanol fermentation of Saccharomyces cerevisiae strain by overexpression of the gene coding for trehalose-6-phosphate synthase.

An MZ, Tang YQ, Mitsumasu K, Liu ZS, Shigeru M, Kenji K.

Biotechnol Lett. 2011 Jul;33(7):1367-74. doi: 10.1007/s10529-011-0576-x. Epub 2011 Mar 6.

PMID:
21380777
9.

Metabolic phenotypes of Saccharomyces cerevisiae mutants with altered trehalose 6-phosphate dynamics.

Walther T, Mtimet N, Alkim C, Vax A, Loret MO, Ullah A, Gancedo C, Smits GJ, François JM.

Biochem J. 2013 Sep 1;454(2):227-37. doi: 10.1042/BJ20130587.

PMID:
23763276
11.

Correlation between TCA cycle flux and glucose uptake rate during respiro-fermentative growth of Saccharomyces cerevisiae.

Heyland J, Fu J, Blank LM.

Microbiology. 2009 Dec;155(Pt 12):3827-37. doi: 10.1099/mic.0.030213-0. Epub 2009 Aug 14.

PMID:
19684065
12.

Anaerobic xylose fermentation by recombinant Saccharomyces cerevisiae carrying XYL1, XYL2, and XKS1 in mineral medium chemostat cultures.

Eliasson A, Christensson C, Wahlbom CF, Hahn-Hägerdal B.

Appl Environ Microbiol. 2000 Aug;66(8):3381-6.

13.

Engineering of Saccharomyces cerevisiae for efficient anaerobic alcoholic fermentation of L-arabinose.

Wisselink HW, Toirkens MJ, del Rosario Franco Berriel M, Winkler AA, van Dijken JP, Pronk JT, van Maris AJ.

Appl Environ Microbiol. 2007 Aug;73(15):4881-91. Epub 2007 Jun 1.

14.
15.
16.

Mutations of the TATA-binding protein confer enhanced tolerance to hyperosmotic stress in Saccharomyces cerevisiae.

Kim NR, Yang J, Kwon H, An J, Choi W, Kim W.

Appl Microbiol Biotechnol. 2013 Sep;97(18):8227-38. doi: 10.1007/s00253-013-4985-8. Epub 2013 May 25.

PMID:
23709042
17.

Reduction of furan derivatives by overexpressing NADH-dependent Adh1 improves ethanol fermentation using xylose as sole carbon source with Saccharomyces cerevisiae harboring XR-XDH pathway.

Ishii J, Yoshimura K, Hasunuma T, Kondo A.

Appl Microbiol Biotechnol. 2013 Mar;97(6):2597-607. doi: 10.1007/s00253-012-4376-6. Epub 2012 Sep 22.

PMID:
23001007
18.

Minimization of glycerol synthesis in industrial ethanol yeast without influencing its fermentation performance.

Guo ZP, Zhang L, Ding ZY, Shi GY.

Metab Eng. 2011 Jan;13(1):49-59. doi: 10.1016/j.ymben.2010.11.003. Epub 2010 Nov 30.

PMID:
21126600
19.

Codon-optimized bacterial genes improve L-Arabinose fermentation in recombinant Saccharomyces cerevisiae.

Wiedemann B, Boles E.

Appl Environ Microbiol. 2008 Apr;74(7):2043-50. doi: 10.1128/AEM.02395-07. Epub 2008 Feb 8.

20.

Construction of lactose-consuming Saccharomyces cerevisiae for lactose fermentation into ethanol fuel.

Zou J, Guo X, Shen T, Dong J, Zhang C, Xiao D.

J Ind Microbiol Biotechnol. 2013 Apr;40(3-4):353-63. doi: 10.1007/s10295-012-1227-5. Epub 2013 Jan 24.

PMID:
23344501
Format
Items per page
Sort by

Send to:

Choose Destination

Supplemental Content

Write to the Help Desk