Format
Items per page
Sort by

Send to:

Choose Destination

Results: 1 to 20 of 368

Related Citations for PubMed (Select 23372687)

1.

Role of deregulated microRNAs in breast cancer progression using FFPE tissue.

Chen L, Li Y, Fu Y, Peng J, Mo MH, Stamatakos M, Teal CB, Brem RF, Stojadinovic A, Grinkemeyer M, McCaffrey TA, Man YG, Fu SW.

PLoS One. 2013;8(1):e54213. doi: 10.1371/journal.pone.0054213. Epub 2013 Jan 23.

2.

Gene expression profiling of tumour epithelial and stromal compartments during breast cancer progression.

Vargas AC, McCart Reed AE, Waddell N, Lane A, Reid LE, Smart CE, Cocciardi S, da Silva L, Song S, Chenevix-Trench G, Simpson PT, Lakhani SR.

Breast Cancer Res Treat. 2012 Aug;135(1):153-65. doi: 10.1007/s10549-012-2123-4. Epub 2012 Jun 21.

PMID:
22718308
3.

Expression of microRNA and their gene targets are dysregulated in preinvasive breast cancer.

Hannafon BN, Sebastiani P, de las Morenas A, Lu J, Rosenberg CL.

Breast Cancer Res. 2011 Mar 4;13(2):R24. doi: 10.1186/bcr2839.

4.

Loss of interferon regulatory factor 5 (IRF5) expression in human ductal carcinoma correlates with disease stage and contributes to metastasis.

Bi X, Hameed M, Mirani N, Pimenta EM, Anari J, Barnes BJ.

Breast Cancer Res. 2011;13(6):R111. doi: 10.1186/bcr3053. Epub 2011 Nov 4.

5.

MicroRNA-132 is frequently down-regulated in ductal carcinoma in situ (DCIS) of breast and acts as a tumor suppressor by inhibiting cell proliferation.

Li S, Meng H, Zhou F, Zhai L, Zhang L, Gu F, Fan Y, Lang R, Fu L, Gu L, Qi L.

Pathol Res Pract. 2013 Mar;209(3):179-83. doi: 10.1016/j.prp.2012.12.002. Epub 2013 Feb 8.

PMID:
23399321
6.

Promoter CpG island hypermethylation during breast cancer progression.

Park SY, Kwon HJ, Lee HE, Ryu HS, Kim SW, Kim JH, Kim IA, Jung N, Cho NY, Kang GH.

Virchows Arch. 2011 Jan;458(1):73-84. doi: 10.1007/s00428-010-1013-6. Epub 2010 Dec 1.

PMID:
21120523
7.

Gene expression variation between distinct areas of breast cancer measured from paraffin-embedded tissue cores.

Schobesberger M, Baltzer A, Oberli A, Kappeler A, Gugger M, Burger H, Jaggi R.

BMC Cancer. 2008 Nov 25;8:343. doi: 10.1186/1471-2407-8-343.

8.

Expression of miR-21 and its targets (PTEN, PDCD4, TM1) in flat epithelial atypia of the breast in relation to ductal carcinoma in situ and invasive carcinoma.

Qi L, Bart J, Tan LP, Platteel I, Sluis Tv, Huitema S, Harms G, Fu L, Hollema H, Berg Av.

BMC Cancer. 2009 May 28;9:163. doi: 10.1186/1471-2407-9-163.

9.

[Expression of fatty acid synthase and its association with HER2 in invasive ductal carcinoma of breast].

Yang M, Xu SP, Ao QL.

Zhonghua Bing Li Xue Za Zhi. 2013 Apr;42(4):257-61. doi: 10.3760/cma.j.issn.0529-5807.2013.04.010. Chinese.

PMID:
23928534
10.

Early dysregulation of cell adhesion and extracellular matrix pathways in breast cancer progression.

Emery LA, Tripathi A, King C, Kavanah M, Mendez J, Stone MD, de las Morenas A, Sebastiani P, Rosenberg CL.

Am J Pathol. 2009 Sep;175(3):1292-302. doi: 10.2353/ajpath.2009.090115. Epub 2009 Aug 21.

11.

[Detection and clinical significance of Notch1 methylation in breast cancer and intraductal proliferative breast lesions].

Zhang N, Sun ZZ, Li F, Cao YW, Zhao CX, Liang WH, Sun HP, Li HA, Fu XG.

Zhonghua Bing Li Xue Za Zhi. 2011 May;40(5):324-9. Chinese.

PMID:
21756827
12.

Nek2A contributes to tumorigenic growth and possibly functions as potential therapeutic target for human breast cancer.

Wang S, Li W, Liu N, Zhang F, Liu H, Liu F, Liu J, Zhang T, Niu Y.

J Cell Biochem. 2012 Jun;113(6):1904-14. doi: 10.1002/jcb.24059.

PMID:
22234886
13.

Differentially expressed genes regulating the progression of ductal carcinoma in situ to invasive breast cancer.

Lee S, Stewart S, Nagtegaal I, Luo J, Wu Y, Colditz G, Medina D, Allred DC.

Cancer Res. 2012 Sep 1;72(17):4574-86. doi: 10.1158/0008-5472.CAN-12-0636. Epub 2012 Jul 2.

14.

Evidence that molecular changes in cells occur before morphological alterations during the progression of breast ductal carcinoma.

Castro NP, Osório CA, Torres C, Bastos EP, Mourão-Neto M, Soares FA, Brentani HP, Carraro DM.

Breast Cancer Res. 2008;10(5):R87. doi: 10.1186/bcr2157. Epub 2008 Oct 17.

15.

Evidence of chromosomal alterations in pure usual ductal hyperplasia as a breast carcinoma precursor.

Xu S, Wei B, Zhang H, Qing M, Bu H.

Oncol Rep. 2008 Jun;19(6):1469-75.

PMID:
18497952
16.

HIN-1, a putative cytokine highly expressed in normal but not cancerous mammary epithelial cells.

Krop IE, Sgroi D, Porter DA, Lunetta KL, LeVangie R, Seth P, Kaelin CM, Rhei E, Bosenberg M, Schnitt S, Marks JR, Pagon Z, Belina D, Razumovic J, Polyak K.

Proc Natl Acad Sci U S A. 2001 Aug 14;98(17):9796-801. Epub 2001 Jul 31.

17.

Loss of heterozygosity analyses of asynchronous lesions of ductal carcinoma in situ and invasive ductal carcinoma of the human breast.

Amari M, Moriya T, Ishida T, Harada Y, Ohnuki K, Takeda M, Sasano H, Horii A, Ohuchi N.

Jpn J Clin Oncol. 2003 Nov;33(11):556-62.

18.
19.

[Promoter methylation and mRNA expression of WT1 gene in MCF10 breast cancer model].

Yang JL, Klinkebiel D, Boland MJ, Tang L, Christman JK.

Zhonghua Bing Li Xue Za Zhi. 2007 Apr;36(4):253-8. Chinese.

PMID:
17706117
20.

Silencing of HSulf-2 expression in MCF10DCIS.com cells attenuate ductal carcinoma in situ progression to invasive ductal carcinoma in vivo.

Khurana A, McKean H, Kim H, Kim SH, mcguire J, Roberts LR, Goetz MP, Shridhar V.

Breast Cancer Res. 2012 Mar 12;14(2):R43.

Format
Items per page
Sort by

Send to:

Choose Destination

Supplemental Content

Write to the Help Desk