Format
Items per page
Sort by

Send to:

Choose Destination

Links from PubMed

Items: 1 to 20 of 100

1.

Influence of oxygen on NADH recycling and oxidative stress resistance systems in Lactobacillus panis PM1.

Kang TS, Korber DR, Tanaka T.

AMB Express. 2013 Jan 31;3(1):10. doi: 10.1186/2191-0855-3-10.

2.

Contributions of citrate in redox potential maintenance and ATP production: metabolic pathways and their regulation in Lactobacillus panis PM1.

Kang TS, Korber DR, Tanaka T.

Appl Microbiol Biotechnol. 2013 Oct;97(19):8693-703. doi: 10.1007/s00253-013-5108-2. Epub 2013 Aug 4.

PMID:
23912115
3.

Isolation and characterization of novel 1,3-propanediol-producing Lactobacillus panis PM1 from bioethanol thin stillage.

Khan NH, Kang TS, Grahame DA, Haakensen MC, Ratanapariyanuch K, Reaney MJ, Korber DR, Tanaka T.

Appl Microbiol Biotechnol. 2013 Jan;97(1):417-28. doi: 10.1007/s00253-012-4386-4. Epub 2012 Oct 18.

PMID:
23076589
4.
5.

Glycerol and environmental factors: effects on 1,3-propanediol production and NAD(+) regeneration in Lactobacillus panis PM1.

Kang TS, Korber DR, Tanaka T.

J Appl Microbiol. 2013 Oct;115(4):1003-11. doi: 10.1111/jam.12291. Epub 2013 Jul 19.

PMID:
23795775
6.

Alkaline conditions stimulate the production of 1,3-propanediol in Lactobacillus panis PM1 through shifting metabolic pathways.

Grahame DA, Kang TS, Khan NH, Tanaka T.

World J Microbiol Biotechnol. 2013 Jul;29(7):1207-15. doi: 10.1007/s11274-013-1283-7. Epub 2013 Feb 12.

PMID:
23400350
7.

Regulation of dual glycolytic pathways for fructose metabolism in heterofermentative Lactobacillus panis PM1.

Kang TS, Korber DR, Tanaka T.

Appl Environ Microbiol. 2013 Dec;79(24):7818-26. doi: 10.1128/AEM.02377-13. Epub 2013 Oct 4.

8.

Transcriptional repressor role of PocR on the 1,3-propanediol biosynthetic pathway by Lactobacillus panis PM1.

Kang TS, Korber DR, Tanaka T.

Biotechnol Lett. 2014 Jun;36(6):1263-9. doi: 10.1007/s10529-014-1477-6. Epub 2014 Feb 22.

PMID:
24563308
10.

Examination of Lactobacillus plantarum lactate metabolism side effects in relation to the modulation of aeration parameters.

Quatravaux S, Remize F, Bryckaert E, Colavizza D, Guzzo J.

J Appl Microbiol. 2006 Oct;101(4):903-12.

11.

Bioconversion of glycerol to 1,3-propanediol in thin stillage-based media by engineered Lactobacillus panis PM1.

Kang TS, Korber DR, Tanaka T.

J Ind Microbiol Biotechnol. 2014 Apr;41(4):629-35. doi: 10.1007/s10295-014-1403-x. Epub 2014 Feb 13.

PMID:
24522935
13.

Biochemical analysis of respiratory metabolism in the heterofermentative Lactobacillus spicheri and Lactobacillus reuteri.

Ianniello RG, Zheng J, Zotta T, Ricciardi A, Gänzle MG.

J Appl Microbiol. 2015 Sep;119(3):763-75. doi: 10.1111/jam.12853. Epub 2015 Jul 25.

PMID:
25996113
14.

A hydrogen peroxide-forming NADH oxidase that functions as an alkyl hydroperoxide reductase in Amphibacillus xylanus.

Niimura Y, Nishiyama Y, Saito D, Tsuji H, Hidaka M, Miyaji T, Watanabe T, Massey V.

J Bacteriol. 2000 Sep;182(18):5046-51.

15.

Adaptive response of Amphibacillus xylanus to normal aerobic and forced oxidative stress conditions.

Mochizuki D, Arai T, Asano M, Sasakura N, Watanabe T, Shiwa Y, Nakamura S, Katano Y, Fujinami S, Fujita N, Abe A, Sato J, Nakagawa J, Niimura Y.

Microbiology. 2014 Feb;160(Pt 2):340-52. doi: 10.1099/mic.0.068726-0. Epub 2013 Dec 4.

PMID:
24307665
16.

Free radical detoxification in Giardia duodenalis.

Brown DM, Upcroft JA, Upcroft P.

Mol Biochem Parasitol. 1995 Jun;72(1-2):47-56.

PMID:
8538699
17.

Effect of different NADH oxidase levels on glucose metabolism by Lactococcus lactis: kinetics of intracellular metabolite pools determined by in vivo nuclear magnetic resonance.

Neves AR, Ramos A, Costa H, van Swam II, Hugenholtz J, Kleerebezem M, de Vos W, Santos H.

Appl Environ Microbiol. 2002 Dec;68(12):6332-42.

18.

Anaerobic and aerobic batch cultivations of Saccharomyces cerevisiae mutants impaired in glycerol synthesis.

Nissen TL, Hamann CW, Kielland-Brandt MC, Nielsen J, Villadsen J.

Yeast. 2000 Mar 30;16(5):463-74.

19.
20.

Metabolic and biochemical responses of probiotic bacteria to oxygen.

Talwalkar A, Kailasapathy K.

J Dairy Sci. 2003 Aug;86(8):2537-46.

PMID:
12939077
Format
Items per page
Sort by

Send to:

Choose Destination

Supplemental Content

Write to the Help Desk