Format
Items per page
Sort by

Send to:

Choose Destination

Results: 1 to 20 of 109

Related Citations for PubMed (Select 23365973)

1.

Effect of asymmetry on hemodynamics in fluid-structure interaction model of congenital bicuspid aortic valves.

Marom G, Kim HS, Rosenfeld M, Raanani E, Haj-Ali R.

Conf Proc IEEE Eng Med Biol Soc. 2012;2012:637-40. doi: 10.1109/EMBC.2012.6346012.

PMID:
23365973
2.

Fully coupled fluid-structure interaction model of congenital bicuspid aortic valves: effect of asymmetry on hemodynamics.

Marom G, Kim HS, Rosenfeld M, Raanani E, Haj-Ali R.

Med Biol Eng Comput. 2013 Aug;51(8):839-48. doi: 10.1007/s11517-013-1055-4. Epub 2013 Mar 10.

PMID:
23475570
3.

Fluid-structure interaction model of aortic valve with porcine-specific collagen fiber alignment in the cusps.

Marom G, Peleg M, Halevi R, Rosenfeld M, Raanani E, Hamdan A, Haj-Ali R.

J Biomech Eng. 2013 Oct 1;135(10):101001-6. doi: 10.1115/1.4024824.

PMID:
23775457
4.

Computational assessment of bicuspid aortic valve wall-shear stress: implications for calcific aortic valve disease.

Chandra S, Rajamannan NM, Sucosky P.

Biomech Model Mechanobiol. 2012 Sep;11(7):1085-96.

PMID:
22294208
5.

A multiscale computational comparison of the bicuspid and tricuspid aortic valves in relation to calcific aortic stenosis.

Weinberg EJ, Kaazempur Mofrad MR.

J Biomech. 2008 Dec 5;41(16):3482-7. doi: 10.1016/j.jbiomech.2008.08.006. Epub 2008 Nov 8.

PMID:
18996528
6.

The congenital bicuspid aortic valve can experience high-frequency unsteady shear stresses on its leaflet surface.

Yap CH, Saikrishnan N, Tamilselvan G, Vasilyev N, Yoganathan AP.

Am J Physiol Heart Circ Physiol. 2012 Sep 15;303(6):H721-31. doi: 10.1152/ajpheart.00829.2011. Epub 2012 Jul 20.

7.

Steady flow hemodynamic and energy loss measurements in normal and simulated calcified tricuspid and bicuspid aortic valves.

Seaman C, Akingba AG, Sucosky P.

J Biomech Eng. 2014 Apr;136(4). doi: 10.1115/1.4026575.

PMID:
24474392
8.

Ex vivo evidence for the contribution of hemodynamic shear stress abnormalities to the early pathogenesis of calcific bicuspid aortic valve disease.

Sun L, Chandra S, Sucosky P.

PLoS One. 2012;7(10):e48843. doi: 10.1371/journal.pone.0048843. Epub 2012 Oct 31.

9.

Comparative finite element model analysis of ascending aortic flow in bicuspid and tricuspid aortic valve.

Viscardi F, Vergara C, Antiga L, Merelli S, Veneziani A, Puppini G, Faggian G, Mazzucco A, Luciani GB.

Artif Organs. 2010 Dec;34(12):1114-20. doi: 10.1111/j.1525-1594.2009.00989.x.

PMID:
20618222
10.

Computational fluid dynamics simulation of transcatheter aortic valve degeneration.

Dwyer HA, Matthews PB, Azadani A, Jaussaud N, Ge L, Guy TS, Tseng EE.

Interact Cardiovasc Thorac Surg. 2009 Aug;9(2):301-8. doi: 10.1510/icvts.2008.200006. Epub 2009 May 4.

11.

The bicuspid aortic valve and its relation to aortic dilation.

Yuan SM, Jing H, Lavee J.

Clinics (Sao Paulo). 2010 May;65(5):497-505. doi: 10.1590/S1807-59322010000500007.

12.

Wall shear stress and flow patterns in the ascending aorta in patients with bicuspid aortic valves differ significantly from tricuspid aortic valves: a prospective study.

Meierhofer C, Schneider EP, Lyko C, Hutter A, Martinoff S, Markl M, Hager A, Hess J, Stern H, Fratz S.

Eur Heart J Cardiovasc Imaging. 2013 Aug;14(8):797-804. doi: 10.1093/ehjci/jes273. Epub 2012 Dec 9.

PMID:
23230276
13.

Aortic root numeric model: annulus diameter prediction of effective height and coaptation in post-aortic valve repair.

Marom G, Haj-Ali R, Rosenfeld M, Schäfers HJ, Raanani E.

J Thorac Cardiovasc Surg. 2013 Feb;145(2):406-411.e1. doi: 10.1016/j.jtcvs.2012.01.080. Epub 2012 Feb 24.

PMID:
22365065
14.

Bicuspid aortic valves experience increased strain as compared to tricuspid aortic valves.

Szeto K, Pastuszko P, del Álamo JC, Lasheras J, Nigam V.

World J Pediatr Congenit Heart Surg. 2013 Oct;4(4):362-6. doi: 10.1177/2150135113501901.

PMID:
24327628
15.

In vitro characterization of bicuspid aortic valve hemodynamics using particle image velocimetry.

Saikrishnan N, Yap CH, Milligan NC, Vasilyev NV, Yoganathan AP.

Ann Biomed Eng. 2012 Aug;40(8):1760-75. doi: 10.1007/s10439-012-0527-2. Epub 2012 Feb 9. Erratum in: Ann Biomed Eng. 2012 Aug;40(8):1776.

PMID:
22318396
16.

Biomechanical properties of the thoracic aneurysmal wall: differences between bicuspid aortic valve and tricuspid aortic valve patients.

Forsell C, Björck HM, Eriksson P, Franco-Cereceda A, Gasser TC.

Ann Thorac Surg. 2014 Jul;98(1):65-71. doi: 10.1016/j.athoracsur.2014.04.042. Epub 2014 Jun 2.

PMID:
24881863
17.

Biomechanical implications of the congenital bicuspid aortic valve: a finite element study of aortic root function from in vivo data.

Conti CA, Della Corte A, Votta E, Del Viscovo L, Bancone C, De Santo LS, Redaelli A.

J Thorac Cardiovasc Surg. 2010 Oct;140(4):890-6, 896.e1-2. doi: 10.1016/j.jtcvs.2010.01.016. Epub 2010 Apr 3.

PMID:
20363481
18.

Numerical model of the aortic root and valve: optimization of graft size and sinotubular junction to annulus ratio.

Marom G, Halevi R, Haj-Ali R, Rosenfeld M, Schäfers HJ, Raanani E.

J Thorac Cardiovasc Surg. 2013 Nov;146(5):1227-31. doi: 10.1016/j.jtcvs.2013.01.030. Epub 2013 Feb 10.

PMID:
23402688
19.

Mechanism of aortic medial matrix remodeling is distinct in patients with bicuspid aortic valve.

Phillippi JA, Green BR, Eskay MA, Kotlarczyk MP, Hill MR, Robertson AM, Watkins SC, Vorp DA, Gleason TG.

J Thorac Cardiovasc Surg. 2014 Mar;147(3):1056-64. doi: 10.1016/j.jtcvs.2013.04.028. Epub 2013 Jun 12.

20.

Fluid dynamics of coarctation of the aorta and effect of bicuspid aortic valve.

Keshavarz-Motamed Z, Garcia J, Kadem L.

PLoS One. 2013 Aug 27;8(8):e72394. doi: 10.1371/journal.pone.0072394. eCollection 2013.

Format
Items per page
Sort by

Send to:

Choose Destination

Supplemental Content

Write to the Help Desk