Format
Items per page
Sort by

Send to:

Choose Destination

Results: 1 to 20 of 121

Similar articles for PubMed (Select 23363615)

1.

An examination of the mechanisms by which neural precursors augment recovery following spinal cord injury: a key role for remyelination.

Hawryluk GW, Spano S, Chew D, Wang S, Erwin M, Chamankhah M, Forgione N, Fehlings MG.

Cell Transplant. 2014 Mar;23(3):365-80. doi: 10.3727/096368912X662408. Epub 2013 Jan 28.

PMID:
23363615
2.

Delayed transplantation of adult neural precursor cells promotes remyelination and functional neurological recovery after spinal cord injury.

Karimi-Abdolrezaee S, Eftekharpour E, Wang J, Morshead CM, Fehlings MG.

J Neurosci. 2006 Mar 29;26(13):3377-89.

3.

Significance of remyelination by neural stem/progenitor cells transplanted into the injured spinal cord.

Yasuda A, Tsuji O, Shibata S, Nori S, Takano M, Kobayashi Y, Takahashi Y, Fujiyoshi K, Hara CM, Miyawaki A, Okano HJ, Toyama Y, Nakamura M, Okano H.

Stem Cells. 2011 Dec;29(12):1983-94. doi: 10.1002/stem.767.

4.

Transplantation of ciliary neurotrophic factor-expressing adult oligodendrocyte precursor cells promotes remyelination and functional recovery after spinal cord injury.

Cao Q, He Q, Wang Y, Cheng X, Howard RM, Zhang Y, DeVries WH, Shields CB, Magnuson DS, Xu XM, Kim DH, Whittemore SR.

J Neurosci. 2010 Feb 24;30(8):2989-3001. doi: 10.1523/JNEUROSCI.3174-09.2010.

5.

Effects of Olig2-overexpressing neural stem cells and myelin basic protein-activated T cells on recovery from spinal cord injury.

Hu JG, Shen L, Wang R, Wang QY, Zhang C, Xi J, Ma SF, Zhou JS, Lü HZ.

Neurotherapeutics. 2012 Apr;9(2):422-45. doi: 10.1007/s13311-011-0090-9.

6.

Neuroprotective effects of human spinal cord-derived neural precursor cells after transplantation to the injured spinal cord.

Emgård M, Piao J, Aineskog H, Liu J, Calzarossa C, Odeberg J, Holmberg L, Samuelsson EB, Bezubik B, Vincent PH, Falci SP, Seiger Å, Åkesson E, Sundström E.

Exp Neurol. 2014 Mar;253:138-45. doi: 10.1016/j.expneurol.2013.12.022. Epub 2014 Jan 8.

PMID:
24412492
7.

Chondroitinase and growth factors enhance activation and oligodendrocyte differentiation of endogenous neural precursor cells after spinal cord injury.

Karimi-Abdolrezaee S, Schut D, Wang J, Fehlings MG.

PLoS One. 2012;7(5):e37589. doi: 10.1371/journal.pone.0037589. Epub 2012 May 22.

8.

Platelet-derived growth factor-responsive neural precursors give rise to myelinating oligodendrocytes after transplantation into the spinal cords of contused rats and dysmyelinated mice.

Plemel JR, Chojnacki A, Sparling JS, Liu J, Plunet W, Duncan GJ, Park SE, Weiss S, Tetzlaff W.

Glia. 2011 Dec;59(12):1891-910. doi: 10.1002/glia.21232. Epub 2011 Aug 23.

PMID:
22407783
9.

Dysregulation of the neuregulin-1-ErbB network modulates endogenous oligodendrocyte differentiation and preservation after spinal cord injury.

Gauthier MK, Kosciuczyk K, Tapley L, Karimi-Abdolrezaee S.

Eur J Neurosci. 2013 Sep;38(5):2693-715. doi: 10.1111/ejn.12268. Epub 2013 Jun 13.

PMID:
23758598
10.

An in vivo characterization of trophic factor production following neural precursor cell or bone marrow stromal cell transplantation for spinal cord injury.

Hawryluk GW, Mothe A, Wang J, Wang S, Tator C, Fehlings MG.

Stem Cells Dev. 2012 Aug 10;21(12):2222-38. doi: 10.1089/scd.2011.0596. Epub 2012 Feb 7.

11.

Schwann cell-like remyelination following transplantation of human umbilical cord blood (hUCB)-derived mesenchymal stem cells in dogs with acute spinal cord injury.

Lee JH, Chung WH, Kang EH, Chung DJ, Choi CB, Chang HS, Lee JH, Hwang SH, Han H, Choe BY, Kim HY.

J Neurol Sci. 2011 Jan 15;300(1-2):86-96. doi: 10.1016/j.jns.2010.09.025. Epub 2010 Nov 10.

PMID:
21071039
12.

Synergistic effects of transplanted adult neural stem/progenitor cells, chondroitinase, and growth factors promote functional repair and plasticity of the chronically injured spinal cord.

Karimi-Abdolrezaee S, Eftekharpour E, Wang J, Schut D, Fehlings MG.

J Neurosci. 2010 Feb 3;30(5):1657-76. doi: 10.1523/JNEUROSCI.3111-09.2010.

13.

Embryonic stem cells differentiate into oligodendrocytes and myelinate in culture and after spinal cord transplantation.

Liu S, Qu Y, Stewart TJ, Howard MJ, Chakrabortty S, Holekamp TF, McDonald JW.

Proc Natl Acad Sci U S A. 2000 May 23;97(11):6126-31.

14.

Axonal remyelination by cord blood stem cells after spinal cord injury.

Dasari VR, Spomar DG, Gondi CS, Sloffer CA, Saving KL, Gujrati M, Rao JS, Dinh DH.

J Neurotrauma. 2007 Feb;24(2):391-410.

15.

Synergistic effects of self-assembling peptide and neural stem/progenitor cells to promote tissue repair and forelimb functional recovery in cervical spinal cord injury.

Iwasaki M, Wilcox JT, Nishimura Y, Zweckberger K, Suzuki H, Wang J, Liu Y, Karadimas SK, Fehlings MG.

Biomaterials. 2014 Mar;35(9):2617-29. doi: 10.1016/j.biomaterials.2013.12.019. Epub 2014 Jan 7.

PMID:
24406216
16.

Olig1 function is required for remyelination potential of transplanted neural progenitor cells in a model of viral-induced demyelination.

Whitman LM, Blanc CA, Schaumburg CS, Rowitch DH, Lane TE.

Exp Neurol. 2012 May;235(1):380-7. doi: 10.1016/j.expneurol.2012.03.003. Epub 2012 Mar 17.

17.
18.

Bone morphogenetic proteins prevent bone marrow stromal cell-mediated oligodendroglial differentiation of transplanted adult neural progenitor cells in the injured spinal cord.

Sandner B, Rivera FJ, Caioni M, Nicholson L, Eckstein V, Bogdahn U, Aigner L, Blesch A, Weidner N.

Stem Cell Res. 2013 Sep;11(2):758-71. doi: 10.1016/j.scr.2013.05.003. Epub 2013 May 16.

19.

Erythropoietin-mediated preservation of the white matter in rat spinal cord injury.

Vitellaro-Zuccarello L, Mazzetti S, Madaschi L, Bosisio P, Gorio A, De Biasi S.

Neuroscience. 2007 Feb 9;144(3):865-77. Epub 2006 Dec 4.

PMID:
17141961
20.
Format
Items per page
Sort by

Send to:

Choose Destination

Supplemental Content

Write to the Help Desk